Ecological succession among iron-oxidizing bacteria

被引:75
|
作者
Fleming, Emily J. [1 ]
Cetinic, Ivona [2 ]
Chan, Clara S. [3 ]
King, D. Whitney [4 ]
Emerson, David [1 ]
机构
[1] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA
[2] Univ Maine, Darling Marine Ctr, Walpole, ME 04573 USA
[3] Univ Delaware, Dept Geol Sci, Newark, DE USA
[4] Colby Coll, Dept Chem, Waterville, ME 04901 USA
来源
ISME JOURNAL | 2014年 / 8卷 / 04期
基金
美国国家科学基金会;
关键词
FeOB; Gallionella; Leptothrix ochracea; neutrophilic; freshwater iron mats; Sideroxydans; seasonal dynamics; DISSOLVED ORGANIC-MATTER; FRESH-WATER; MICROBIAL COMMUNITY; CIRCUMNEUTRAL PH; GALLIONELLA SPP; SEQUENCE DATA; NEUTRAL PH; OXIDATION; WETLAND; KINETICS;
D O I
10.1038/ismej.2013.197
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Despite over 125 years of study, the factors that dictate species dominance in neutrophilic iron-oxidizing bacterial (FeOB) communities remain unknown. In a freshwater wetland, we documented a clear ecological succession coupled with niche separation between the helical stalk-forming Gallionellales (for example, Gallionella ferruginea) and tubular sheath-forming Leptothrix ochracea. Changes in the iron-seep community were documented using microscopy and cultivation-independent methods. Quantification of Fe-oxyhydroxide morphotypes by light microscopy was coupled with species-specific fluorescent in situ hybridization (FISH) probes using a protocol that minimized background fluorescence caused by the Fe-oxyhydroxides. Together with scanning electron microscopy, these techniques all indicated that Gallionellales dominated during early spring, with L. ochracea becoming more abundant for the remainder of the year. Analysis of tagged pyrosequencing reads of the small subunit ribosomal RNA gene (SSU rRNA) collected during seasonal progression supported a clear Gallionellales to L. ochracea transition, and community structure grouped according to observed dominant FeOB forms. Axis of redundancy analysis of physicochemical parameters collected from iron mats during the season, plotted with FeOB abundance, corroborated several field and microscopy-based observations and uncovered several unanticipated relationships. On the basis of these relationships, we conclude that the ecological niche of the stalk-forming Gallionellales is in waters with low organic carbon and steep redoxclines, and the sheath-forming L. ochracea is abundant in waters that contain high concentrations of complex organic carbon, high Fe and Mn content and gentle redoxclines. Finally, these findings identify a largely unexplored relationship between FeOB and organic carbon.
引用
收藏
页码:804 / 815
页数:12
相关论文
共 50 条
  • [1] Ecological succession among iron-oxidizing bacteria
    Emily J Fleming
    Ivona Cetinić
    Clara S Chan
    D Whitney King
    David Emerson
    The ISME Journal, 2014, 8 : 804 - 815
  • [2] FERRIC IRON REDUCTION BY SULFUR-OXIDIZING AND IRON-OXIDIZING BACTERIA
    BROCK, TD
    GUSTAFSON, J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1976, 32 (04) : 567 - 571
  • [3] Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria
    Miot, Jennyfer
    Benzerara, Karim
    Morin, Guillaume
    Kappler, Andreas
    Bernard, Sylvain
    Obst, Martin
    Ferard, Celine
    Skouri-Panet, Feriel
    Guigner, Jean-Michel
    Posth, Nicole
    Galvez, Matthieu
    Brown, Gordon E., Jr.
    Guyot, Francois
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (03) : 696 - 711
  • [4] Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria
    Miot, Jennyfer
    Benzerara, Karim
    Obst, Martin
    Kappler, Andreas
    Hegler, Florian
    Schaedler, Sebastian
    Bouchez, Camille
    Guyot, Francois
    Morin, Guillaume
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (17) : 5586 - 5591
  • [5] Biosynthesis of natrojarosite by immobilized iron-oxidizing bacteria
    Wang, Yujian
    Li, Hongyu
    Li, Daping
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2013, 120 : 35 - 38
  • [6] Electron uptake by iron-oxidizing phototrophic bacteria
    A. Bose
    E.J. Gardel
    C. Vidoudez
    E.A. Parra
    P.R. Girguis
    Nature Communications, 5
  • [7] Marine iron-oxidizing bacteria and steel corrosion
    McBeth, J. M.
    Farrar, K. M.
    Fleming, E. J.
    Ray, R. I.
    Little, B. J.
    Emerson, D.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (12) : A683 - A683
  • [8] Electron uptake by iron-oxidizing phototrophic bacteria
    Bose, A.
    Gardel, E. J.
    Vidoudez, C.
    Parra, E. A.
    Girguis, P. R.
    NATURE COMMUNICATIONS, 2014, 5 : 3391
  • [9] The role of iron-oxidizing bacteria in biocorrosion: a review
    Emerson, David
    BIOFOULING, 2018, 34 (09) : 989 - 1000
  • [10] Bioxidative dissolution of cinnabar by iron-oxidizing bacteria
    Wang, Y. J.
    Yang, Y. J.
    Li, D. P.
    Hu, H. F.
    Li, H. Y.
    He, X. H.
    BIOCHEMICAL ENGINEERING JOURNAL, 2013, 74 : 102 - 106