One-dimensional finite range random walk in random medium and invariant measure equation

被引:15
作者
Bremont, Julien [1 ]
机构
[1] Univ Paris Est, Fac Sci & Technol, Lab Anal & Math Appl, F-94010 Creteil, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2009年 / 45卷 / 01期
关键词
Finite range Markov chain; Lyapunov eigenvector; Invariant measure; Stable cone; RANDOM ENVIRONMENT; RECURRENCE; TRANSIENCE;
D O I
10.1214/07-AIHP150
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a model of random walks on Z with finite range in a stationary and ergodic random environment. We first provide a fine analysis of the geometrical properties of the central left and right Lyapunov eigenvectors of the random matrix naturally associated with the random walk, highlighting the mechanism of the model. This allows us to formulate a criterion for the existence of the absolutely continuous invariant measure for the environments seen from the particle. We then deduce a characterization of the non-zero-speed regime of the model.
引用
收藏
页码:70 / 103
页数:34
相关论文
共 26 条
[1]   Asymptotic behaviour for random walks in random environments [J].
Alili, S .
JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) :334-349
[2]  
Arnold L., 1998, Random Dynamical Systems
[3]   Recurrence and transience of random walks in random environments on a strip [J].
Bolthausen, E ;
Goldsheid, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :429-447
[4]   Lingering random walks in random environment on a strip [J].
Bolthausen, Erwin ;
Goldsheid, Ilya .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) :253-288
[5]   Random walks in random medium on Z and Lyapunov spectrum [J].
Brémont, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (03) :309-336
[6]   On some random walks on Z in random medium [J].
Brémont, J .
ANNALS OF PROBABILITY, 2002, 30 (03) :1266-1312
[7]   On the recurrence of random walks on Z in random medium [J].
Bremont, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (11) :1011-1016
[8]  
Conze J.-P., 2000, COLLOQ MATH-WARSAW, V84, P457
[9]  
EVSTIGNEEV CG, 1974, USP MAT NAUK, V29, P219
[10]  
Federer H., 1969, Geometric Measure Theory. Classics in Mathematics