Foliations with radial Kupka set and pencils of Calabi-Yau hypersurfaces
被引:3
|
作者:
Calvo-Andrade, Omegar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, Brazil
Calvo-Andrade, Omegar
[1
]
Mendes, Luis Gustavo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, Brazil
Mendes, Luis Gustavo
[1
]
Pan, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, Brazil
Pan, Ivan
[1
]
机构:
[1] Univ Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, Brazil
We show that holomorphic singular codimension one foliations of the complex projective space with a Kupka singular set of radial type and verifying some global hypotheses have rational first integral. The generic elements of such pencils are Calabi-Yau.