Numerical analysis for the approximation of optimal control problems with pointwise observations

被引:13
作者
Chang, Lili [1 ]
Gong, Wei [2 ]
Yan, Ningning [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, NCMIS & LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
optimal control problems; pointwise observations; finite element method; a priori error estimate; a posteriori error estimate; DISTRIBUTED CONTROL-SYSTEMS; CONSTRAINED LQR PROBLEMS; ELLIPTIC PROBLEMS; DISCRETIZATION; CONVERGENCE;
D O I
10.1002/mma.2861
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the numerical methods for optimal control problems governed by elliptic PDEs with pointwise observations of the state. The first order optimality conditions as well as regularities of the solutions are derived. The optimal control and adjoint state have low regularities due to the pointwise observations. For the finite dimensional approximation, we use the standard conforming piecewise linear finite elements to approximate the state and adjoint state variables, whereas variational discretization is applied to the discretization of the control. A priori and a posteriori error estimates for the optimal control, the state and adjoint state are obtained. Numerical experiments are also provided to confirm our theoretical results. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:4502 / 4520
页数:19
相关论文
共 25 条
[1]   A posteriori error estimates for elliptic problems with Dirac delta source terms [J].
Araya, Rodolfo ;
Behrens, Edwin ;
Rodriguez, Rodolfo .
NUMERISCHE MATHEMATIK, 2006, 105 (02) :193-216
[2]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[3]   Finite element methods in local active control of sound [J].
Bermúdez, A ;
Gamallo, P ;
Rodríguez, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :437-465
[6]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems, DOI DOI 10.1137/1.9780898719208
[7]   Convergence of a finite element approximation to a state-constrained elliptic control problem [J].
Deckelnick, Klaus ;
Hinze, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :1937-1953
[8]   Constrained LQR problems in elliptic distributed control systems with point observations [J].
Ding, ZH ;
Ji, L ;
Zhou, JX .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (01) :264-294
[9]   APPROXIMATION OF A CLASS OF OPTIMAL CONTROL PROBLEMS WITH ORDER OF CONVERGENCE ESTIMATES [J].
FALK, RS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (01) :28-47
[10]  
GEVECI T, 1979, RAIRO-ANAL NUMER-NUM, V13, P313