An open-set detection evaluation methodology applied to language and emotion recognition

被引:0
|
作者
van Leeuwen, David A. [1 ]
Truong, Khiet P. [1 ]
机构
[1] TNO Human Factors, NL-3769 ZG Soesterberg, Netherlands
来源
INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4 | 2007年
关键词
detection methodology; open-set evaluation; language; emotion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a detection methodology for recognition technologies in speech for which it is difficult to obtain an abundance of non-target classes. An example is language recognition, where we would like to be able to measure the detection capability of a single target language without confounding with the modeling capability of non-target languages. The evaluation framework is based on a cross validation scheme leaving the non-target class out of the allowed training material for the detector. The framework allows us to use Detection Error Tradeoff curves properly. As another application example we apply the evaluation scheme to emotion recognition in order to obtain single-emotion detection performance assessment.
引用
收藏
页码:365 / 368
页数:4
相关论文
共 50 条
  • [1] GAUSSIAN BACKEND DESIGN FOR OPEN-SET LANGUAGE DETECTION
    BenZeghiba, Mohamed Faouzi
    Gauvain, Jean-Luc
    Lamel, Lori
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 4349 - 4352
  • [2] Open-Set Recognition in the Age of Vision-Language Models
    Miller, Dimity
    Sunderhauf, Niko
    Kenna, Alex
    Mason, Keita
    COMPUTER VISION - ECCV 2024, PT XLII, 2025, 15100 : 1 - 18
  • [3] DenseHybrid: Hybrid Anomaly Detection for Dense Open-Set Recognition
    Grcic, Matej
    Bevandic, Petra
    Segvic, Sinisa
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 500 - 517
  • [4] Unconstrained Face Detection and Open-Set Face Recognition Challenge
    Guenther, M.
    Hu, P.
    Herrmann, C.
    Chan, C. H.
    Jiang, M.
    Yang, S.
    Dhamija, A. R.
    Ramanan, D.
    Beyerer, J.
    Kittler, J.
    Al Jazaery, M.
    Nouyed, M. I.
    Guo, G.
    Stankiewicz, C.
    Boult, T. E.
    2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 697 - 706
  • [5] Toward Open-Set Face Recognition
    Gunther, Manuel
    Cruz, Steve
    Rudd, Ethan M.
    Boult, Terrance E.
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 573 - 582
  • [6] Open-Set Facial Expression Recognition
    Zhang, Yuhang
    Yao, Yue
    Liu, Xuannan
    Qin, Lixiong
    Wang, Wenjing
    Deng, Weihong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 646 - 654
  • [7] Learning Placeholders for Open-Set Recognition
    Zhou, Da-Wei
    Ye, Han-Jia
    Zhan, De-Chuan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4399 - 4408
  • [8] OPEN-SET RECOGNITION FOR FACIAL-EXPRESSION RECOGNITION
    Uchida, Mihiro
    Orihashi, Shota
    Takashima, Akihiko
    Yamazaki, Yoshihiro
    Masumura, Ryo
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 780 - 784
  • [9] TASK-AGNOSTIC OPEN-SET PROTOTYPE FOR FEW-SHOT OPEN-SET RECOGNITION
    Kim, Byeonggeun
    Lee, Jun-Tae
    Shim, Kyuhong
    Chang, Simyung
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 31 - 35
  • [10] Hierarchical Open-Set Recognition for Automatic Target Recognition
    Bennette, Walter
    Hofmann, Nathaniel
    Wilson, Nathaniel
    Witter, Tyler
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,