Detection of Dental Diseases through X-Ray Images Using Neural Search Architecture Network

被引:17
作者
AL-Ghamdi, Abdullah S. AL-Malaise [1 ,2 ]
Ragab, Mahmoud [3 ,4 ,5 ]
AlGhamdi, Saad Abdulla [6 ]
Asseri, Amer H. [4 ,7 ]
Mansour, Romany F. [8 ]
Koundal, Deepika [9 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Syst Dept, Jeddah 21589, Saudi Arabia
[2] Dar Alhekma Univ, HECI Sch, Informat Syst Dept, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, Ctr Artificial Intelligence Precis Med, Jeddah 21589, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Math Dept, Cairo 11884, Egypt
[6] King Abdulaziz Gen Hosp, Jeddah, Saudi Arabia
[7] King Abdulaziz Univ, Fac Sci, Biochem Dept, Jeddah 21589, Saudi Arabia
[8] New Valley Univ, Fac Sci, Dept Math, El Kharga 72511, Egypt
[9] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun, Uttarakhand, India
关键词
CLASSIFICATION; TEETH; SEGMENTATION; DIAGNOSIS;
D O I
10.1155/2022/3500552
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An important aspect of the diagnosis procedure in daily clinical practice is the analysis of dental radiographs. This is because the dentist must interpret different types of problems related to teeth, including the tooth numbers and related diseases during the diagnostic process. For panoramic radiographs, this paper proposes a convolutional neural network (CNN) that can do multitask classification by classifying the X-ray images into three classes: cavity, filling, and implant. In this paper, convolutional neural networks are taken in the form of a NASNet model consisting of different numbers of max-pooling layers, dropout layers, and activation functions. Initially, the data will be augmented and preprocessed, and then, the construction of a multioutput model will be done. Finally, the model will compile and train the model; the evaluation parameters used for the analysis of the model are loss and the accuracy curves. The model has achieved an accuracy of greater than 96% such that it has outperformed other existing algorithms.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Automated COVID-19 detection in chest X-ray images using fine-tuned deep learning architectures [J].
Aggarwal, Sonam ;
Gupta, Sheifali ;
Alhudhaif, Adi ;
Koundal, Deepika ;
Gupta, Rupesh ;
Polat, Kemal .
EXPERT SYSTEMS, 2022, 39 (03)
[2]   A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification [J].
Al-antari, Mugahed A. ;
Al-masni, Mohammed A. ;
Choi, Mun-Taek ;
Han, Seung-Moo ;
Kim, Tae-Seong .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 117 :44-54
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Fusion of Infrared and Visible Images Using Fuzzy Based Siamese Convolutional Network [J].
Bhalla, Kanika ;
Koundal, Deepika ;
Bhatia, Surbhi ;
Rahmani, Mohammad Khalid Imam ;
Tahir, Muhammad .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03) :5503-5518
[5]   Determination of disease severity in COVID-19 patients using deep learning in chest X-ray images [J].
Blain, Maxime ;
Kassin, Michael T. ;
Varble, Nicole ;
Wang, Xiaosong ;
Xu, Ziyue ;
Xu, Daguang ;
Carrafiello, Gianpaolo ;
Vespro, Valentina ;
Stellato, Elvira ;
Ierardi, Anna Maria ;
Di Meglio, Letizia ;
Suh, Robert D. ;
Walker, Stephanie A. ;
Xu, Sheng ;
Sanford, Thomas H. ;
Turkbey, Evrim B. ;
Harmon, Stephanie ;
Turkbey, Baris ;
Wood, Bradford J. .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2021, 27 (01) :20-27
[6]  
Chen H, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-019-40414-y, 10.1038/s41598-018-36228-z]
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[9]   BB-UNet: U-Net With Bounding Box Prior [J].
El Jurdi, Rosana ;
Petitjean, Caroline ;
Honeine, Paul ;
Abdallah, Fahed .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (06) :1189-1198
[10]   Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography [J].
Fukuda, Motoki ;
Inamoto, Kyoko ;
Shibata, Naoki ;
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Shota ;
Nakata, Kazuhiko ;
Katsumata, Akitoshi ;
Fujita, Hiroshi ;
Ariji, Eiichiro .
ORAL RADIOLOGY, 2020, 36 (04) :337-343