On the stability problem for a mixed type of quartic and quadratic functional equation

被引:53
作者
Kim, Hark-Mahn [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
stability; functional equation; quartic mappings;
D O I
10.1016/j.jmaa.2005.11.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E1 and E2 be real linear spaces. In this paper, we determine the general solution for a mixed type functional equation of, a quartic and a quadratic mapping f : E-1 -> E-2, [GRAPHICS] for all n-variables x(1),..., x(n) is an element of E-1, where n > 2. In addition we solve the generalized Hyers-Ulam-Rassias stability problem for the functional equation. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:358 / 372
页数:15
相关论文
共 23 条
[1]  
Aczel J., 1989, FUNCTIONAL EQUATIONS
[2]  
AMIR D, 1986, CHARACTERIZATIONS IN
[3]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[4]  
Chung Jukang K., 2003, [Bulletin of the KMS, 대한수학회보], V40, P565
[5]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[6]  
FISCHER P, 1981, AEQUATIONES MATH, V23, P169
[7]   STABILITY OF ISOMETRIES [J].
GRUBER, PM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :263-277
[8]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[9]   On inner products in linear, metric spaces [J].
Jordan, P ;
Neumann, JV .
ANNALS OF MATHEMATICS, 1935, 36 :719-723
[10]  
JUN K, IN PRESS J INEQUAL A