A limit theorem of two-type Galton-Watson branching processes with immigration

被引:6
作者
Ma, Chunhua [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
D O I
10.1016/j.spl.2009.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a simple set of sufficient conditions for the weak convergence of two-type Galton-Watson branching processes with immigration to two-dimensional, continuous-time. continuous-state branching processes with immigration, which generalizes the limit result of Li [Li, Z.H., 2006a. A limit theorem of discrete Galton-Watson branching processes with immigration. J. Appl. Probab. 43, 289-295]. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1710 / 1716
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], 2006, FRONT MATH CHINA, DOI DOI 10.1007/S11464-005-0027-X
[3]  
Duffie D, 2003, ANN APPL PROBAB, V13, P984
[4]  
Ethier S. N., 2005, WILEY SERIES PROBABI
[5]   BRANCHING PROCESSES WITH IMMIGRATION AND RELATED LIMIT THEOREMS [J].
KAWAZU, K ;
WATANABE, S .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (01) :36-&
[6]   Catalytic discrete state branching models and related limit theorems [J].
Li, Zenghu ;
Ma, Chunhua .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (04) :936-965
[7]   A limit theorem for discrete Galton-Watson branching processes with immigration [J].
Li, ZH .
JOURNAL OF APPLIED PROBABILITY, 2006, 43 (01) :289-295
[8]  
LI ZH, 1991, CHINESE SCI B ENGLIS, V36, P976
[9]   A DECOMPOSITION OF BESSEL BRIDGES [J].
PITMAN, J ;
YOR, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (04) :425-457
[10]   BESSEL DIFFUSIONS AS A ONE-PARAMETER FAMILY OF DIFFUSION PROCESSES [J].
SHIGA, T ;
WATANABE, S .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 27 (01) :37-46