A Modified Inertial Shrinking Projection Method for Solving Inclusion Problems and Split Equilibrium Problems in Hilbert Spaces

被引:2
|
作者
Cholamjiak, Watcharaporn [1 ]
Khan, Suhel Ahmad [2 ]
Suantai, Suthep [3 ]
机构
[1] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[2] BITS Pilani, Dept Math, Dubai Campus,POB 345055, Dubai, U Arab Emirates
[3] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2019年 / 10卷 / 02期
关键词
Inertial method; Inclusion problem; SP-iteration; Forward-backward algorithm; Split equilibrium problem; STRONG-CONVERGENCE THEOREMS; MAXIMAL MONOTONE-OPERATORS; FIXED-POINTS; GENERALIZED EQUILIBRIUM; NONEXPANSIVE-MAPPINGS; PROXIMAL METHOD; ALGORITHMS; WEAK; SUM;
D O I
10.26713/cma.v10i2.1074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a modified inertial forward-backward splitting method for solving the split equilibrium problem and the inclusion problem. Then we establish the weak convergence theorem of the proposed method. Using the shrinking projection method, we obtain strong convergence theorem. Moreover, we provide some numerical experiments to show the efficiency and the comparison.
引用
收藏
页码:191 / 213
页数:23
相关论文
共 50 条
  • [41] MODIFIED INERTIAL ALGORITHM FOR SOLVING MIXED EQUILIBRIUM PROBLEMS IN HADAMARD SPACES
    Khan, Abdul Rahim
    Izuchukwu, Chinedu
    Aphane, Maggie
    Ugwunnadi, Godwin Chidi
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (04): : 859 - 877
  • [42] An inertial forward–backward splitting method for solving combination of equilibrium problems and inclusion problems
    Suhel Ahmad Khan
    Watcharaporn Cholamjiak
    K. R. Kazmi
    Computational and Applied Mathematics, 2018, 37 : 6283 - 6307
  • [43] The Shrinking Projection Method for Solving Variational Inequality Problems and Fixed Point Problems in Banach Spaces
    Wangkeeree, Rabian
    Wangkeeree, Rattanaporn
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [44] THE MODIFIED INERTIAL RELAXED CQ ALGORITHM FOR SOLVING THE SPLIT FEASIBILITY PROBLEMS
    Suantai, Suthep
    Pholasa, Nattawut
    Cholamjiak, Prasit
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (04) : 1595 - 1615
  • [45] A modified hybrid projection method for solving generalized mixed equilibrium problems and fixed point problems in Banach spaces
    Saewan, Siwaporn
    Kumam, Poom
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) : 1723 - 1735
  • [46] Viscosity approximations by the shrinking projection method in Hilbert spaces
    Kimura, Yasunori
    Nakajo, Kazuhide
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (09) : 1400 - 1408
  • [47] Strong Convergence Theorem on Split Equilibrium and Fixed Point Problems in Hilbert Spaces
    Wang, Shenghua
    Gong, Xiaoying
    Kang, Shinmin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1309 - 1326
  • [48] AN INERTIAL SHRINKING PROJECTION ALGORITHM FOR SPLIT COMMON FIXED POINT PROBLEMS
    Zhou, Zheng
    Tan, Bing
    Li, Songxiao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2104 - 2120
  • [49] Shrinking projection methods involving inertial forward-backward splitting methods for inclusion problems
    Khan, Suhel Ahmad
    Suantai, Suthep
    Cholamjiak, Watcharaporn
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 645 - 656
  • [50] EXTRAGRADIENT ALGORITHMS FOR SPLIT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Wang, Shenghua
    Zhang, Yifan
    Wang, Wenxin
    Guo, Haichao
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019