A Modified Inertial Shrinking Projection Method for Solving Inclusion Problems and Split Equilibrium Problems in Hilbert Spaces

被引:2
|
作者
Cholamjiak, Watcharaporn [1 ]
Khan, Suhel Ahmad [2 ]
Suantai, Suthep [3 ]
机构
[1] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[2] BITS Pilani, Dept Math, Dubai Campus,POB 345055, Dubai, U Arab Emirates
[3] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2019年 / 10卷 / 02期
关键词
Inertial method; Inclusion problem; SP-iteration; Forward-backward algorithm; Split equilibrium problem; STRONG-CONVERGENCE THEOREMS; MAXIMAL MONOTONE-OPERATORS; FIXED-POINTS; GENERALIZED EQUILIBRIUM; NONEXPANSIVE-MAPPINGS; PROXIMAL METHOD; ALGORITHMS; WEAK; SUM;
D O I
10.26713/cma.v10i2.1074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a modified inertial forward-backward splitting method for solving the split equilibrium problem and the inclusion problem. Then we establish the weak convergence theorem of the proposed method. Using the shrinking projection method, we obtain strong convergence theorem. Moreover, we provide some numerical experiments to show the efficiency and the comparison.
引用
收藏
页码:191 / 213
页数:23
相关论文
共 50 条
  • [21] INERTIAL HYBRID PROJECTION METHODS WITH SELECTION TECHNIQUES FOR SPLIT COMMON FIXED POINT PROBLEMS IN HILBERT SPACES
    Mouktonglang, Thanasak
    Suparatulatorn, Raweerote
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (02): : 47 - 54
  • [22] An inertial extragradient method for solving strongly pseudomonotone equilibrium problems in Hilbert spaces
    Le, Thi Thanh Hai
    Thong, Duong Viet
    Vuong, Phan Tu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06)
  • [23] Generalized relaxed inertial method with regularization for solving split feasibility problems in real Hilbert spaces
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Narain, O. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [24] Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems
    Tan, Bing
    Xu, Shanshan
    Li, Songxiao
    MATHEMATICS, 2020, 8 (02)
  • [25] A Self-Adaptive Shrinking Projection Method with an Inertial Technique for Split Common Null Point Problems in Banach Spaces
    Okeke, Chibueze Christian
    Jolaoso, Lateef Olakunle
    Nwokoye, Regina
    AXIOMS, 2020, 9 (04) : 1 - 20
  • [26] A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces
    Strodiot, Jean Jacques
    Phan Tu Vuong
    Thi Thu Van Nguyen
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 159 - 178
  • [27] Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Tan, Bing
    OPTIMIZATION, 2024, 73 (05) : 1329 - 1354
  • [28] An Iterative Method for Solving Split Monotone Variational Inclusion Problems and Finite Family of Variational Inequality Problems in Hilbert Spaces
    Sriprad, Wanna
    Srisawat, Somnuk
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2021, 2021
  • [29] SHRINKING PROJECTION METHOD FOR SOLVING ZERO POINT AND FIXED POINT PROBLEMS IN BANACH SPACES
    Liu, Liya
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (03): : 439 - 454
  • [30] STRONG CONVERGENCE THEOREMS BY SHRINKING PROJECTION METHODS FOR GENERALIZED SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES
    Komiya, Hidetoshi
    Takahashi, Wataru
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (01): : 1 - 17