Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions

被引:93
作者
Panopoulos, G. A. [1 ]
Anastassi, Z. A. [1 ]
Simos, T. E. [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, Comp Sci Lab, Tripolis 22100, Greece
关键词
Schrodinger equation; Orbital problems; Phase-lag; Initial value problems; Oscillating solution; Symmetric; Multistep; Implicit; RUNGE-KUTTA METHODS; MINIMAL PHASE-LAG; PREDICTOR-CORRECTOR METHODS; EXPONENTIALLY-FITTED METHOD; NUMEROV-TYPE METHOD; FINITE-DIFFERENCE METHOD; HYBRID EXPLICIT METHODS; ALGEBRAIC ORDER METHODS; NOUMEROV-TYPE METHOD; NUMERICAL-SOLUTION;
D O I
10.1007/s10910-008-9506-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we present two optimized eight-step symmetric implicit methods with phase-lag order ten and infinite (phase-fitted). The methods are constructed to solve numerically the radial time-independent Schrodinger equation with the use of the Woods-Saxon potential. They can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the two new methods to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with infinite order of phase-lag is the most efficient of all the compared methods and for all the problems solved.
引用
收藏
页码:604 / 620
页数:17
相关论文
共 135 条
[1]  
AMODIO P, 2006, JNAIAM J NUMER ANAL, V1, P5
[2]   A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrodinger equation [J].
Anastassi, Z. A. ;
Simos, T. E. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 41 (01) :79-100
[3]  
Anastassi ZA, 2008, MATCH-COMMUN MATH CO, V60, P803
[4]   An optimized Runge-Kutta method for the solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :1-9
[5]   Trigonometrically fitted fifth-order Runge-Kutta methods for the numerical solution of the Schrodinger equation [J].
Anastassi, ZA ;
Simos, TE .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (7-8) :877-886
[6]   Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) :281-293
[7]   A trigonometrically fitted Runge-Kutta method for the numerical solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
NEW ASTRONOMY, 2005, 10 (04) :301-309
[8]   A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
NEW ASTRONOMY, 2004, 10 (01) :31-37
[9]   Special optimized Runge-Kutta methods for IVPs with oscillating solutions [J].
Anastassi, ZA ;
Simos, TE .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (01) :1-15
[10]  
ANASTASSI ZA, J MATH CHEM IN PRESS