Spatio-temporal characterization of a pulsed DC atmospheric pressure plasma jet interacting with substrates

被引:16
作者
Johnson, Michael J. [1 ]
Boris, David R. [2 ]
Petrova, Tzvetelina B. [2 ]
Walton, Scott G. [2 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] US Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA
关键词
plasma jet; plasma-surface interaction; spatio-temporal evolution; optical emission spectroscopy; DIELECTRIC BARRIER DISCHARGE; EMISSION-SPECTROSCOPY; HELIUM; NITROGEN; POLARIZATION; ATOMS;
D O I
10.1088/1361-6463/abc502
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atmospheric pressure plasmas generate a variety of chemically active species in open air, thus providing the unique ability to treat a variety of materials that do not require or are not compatible with vacuum systems. Producing the plasma-surface interaction that leads to a desired change in the substrate is complicated by the codependency between the plasma and the substrate: while the plasma will modify the surface, the surface will also influence the plasma properties. In this work, a pulsed-DC plasma jet produced in helium and impinging upon glass and metal substrates is studied over a range of applied voltage pulse widths extending from 1 to 10 mu s. Current-voltage measurements, high speed images, and time-resolved optical emission from three important He and nitrogen excited species are used to examine the evolution of the plasma and its interaction with the surface. At ignition, a streamer is ejected into the open air from the jet exit and eventually collides with the substrate. For a glass substrate, the streamer will hit the surface and form a short-lived plasma across it. This surface plasma is almost completely unaffected by changes in the voltage pulse width. In contrast, when the streamer hits a metal substrate, a surface discharge will form that will last the entirety of the voltage pulse. If the pulse is long enough, a 'reflected discharge' will slowly develop that extends from the substrate back towards the outlet of the plasma jet. The emission intensity of the surface discharge closely matches that of the initial streamer, but not the reflected discharge, which suggests different electron kinetics between the two features. The addition of capacitors or resistors between the metal substrate and ground show how differences in substrate electrical properties can account for some of these behaviors. Emission line ratios are used to examine the evolution of electron temperature and the relative importance of Penning processes during the different plasma phases.
引用
收藏
页数:15
相关论文
共 73 条
[1]   Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing [J].
Abuzairi, Tomy ;
Okada, Mitsuru ;
Bhattacharjee, Sudeep ;
Nagatsu, Masaaki .
APPLIED SURFACE SCIENCE, 2016, 390 :489-496
[2]   Plasma bullet propagation and reflection from metallic and dielectric targets [J].
Babaeva, Natalia Yu ;
Naidis, George, V ;
Panov, Vladislav A. ;
Wang, Ruixue ;
Zhang, Shuai ;
Zhang, Cheng ;
Shao, Tao .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (09)
[3]   Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon [J].
Begum, Asma ;
Laroussi, Mounir ;
Pervez, Mohammad Rasel .
AIP ADVANCES, 2013, 3 (06)
[4]   On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures [J].
Bibinov, NK ;
Fateev, AA ;
Wiesemann, K .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (12) :1819-1826
[5]   Application of excitation cross sections to optical plasma diagnostics [J].
Boffard, JB ;
Lin, CC ;
DeJoseph, CA .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (12) :R143-R161
[6]   Electric field determination in streamer discharges in air at atmospheric pressure [J].
Bonaventura, Z. ;
Bourdon, A. ;
Celestin, S. ;
Pasko, V. P. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (03)
[7]   Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture [J].
Bourdon, Anne ;
Darny, Thibault ;
Pechereau, Francois ;
Pouvesle, Jean-Michel ;
Viegas, Pedro ;
Iseni, Sylvain ;
Robert, Eric .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (03)
[8]   Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets [J].
Breden, D. ;
Miki, K. ;
Raja, L. L. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (03)
[9]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[10]   Influence of the charges deposition on the spatio-temporal self-organization of streamers in a DBD [J].
Celestin, S. ;
Canes-Boussard, G. ;
Guaitella, O. ;
Bourdon, A. ;
Rousseau, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (20)