Gluon dynamics from an ordinary differential equation

被引:9
作者
Aguilar, A. C. [1 ]
Ferreira, M. N. [1 ]
Papavassiliou, J. [2 ,3 ,4 ]
机构
[1] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
[2] Univ Valencia, Dept Theoret Phys, Valencia 46100, Spain
[3] Univ Valencia, IFIC, Valencia 46100, Spain
[4] CSIC, Valencia 46100, Spain
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1140/epjc/s10052-021-08849-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a novel method for computing the nonperturbative kinetic term of the gluon propagator from an ordinary differential equation, whose derivation hinges on the central hypothesis that the regular part of the three-gluon vertex and the aforementioned kinetic term are related by a partial Slavnov-Taylor identity. The main ingredients entering in the solution are projection of the three-gluon vertex and a particular derivative of the ghost-gluon kernel, whose approximate form is derived from a Schwinger-Dyson equation. Crucially, the requirement of a pole-free answer determines the initial condition, whose value is calculated from an integral containing the same ingredients as the solution itself. This feature fixes uniquely, at least in principle, the form of the kinetic term, once the ingredients have been accurately evaluated. In practice, however, due to substantial uncertainties in the computation of the necessary inputs, certain crucial components need be adjusted by hand, in order to obtain self-consistent results. Furthermore, if the gluon propagator has been independently accessed from the lattice, the solution for the kinetic term facilitates the extraction of the momentum-dependent effective gluon mass. The practical implementation of this method is carried out in detail, and the required approximations and theoretical assumptions are duly highlighted.
引用
收藏
页数:20
相关论文
共 125 条
  • [1] THE BACKGROUND FIELD METHOD BEYOND ONE LOOP
    ABBOTT, LF
    [J]. NUCLEAR PHYSICS B, 1981, 185 (01) : 189 - 203
  • [2] Power law running of the effective gluon mass
    Aguilar, A. C.
    Papavassiliou, J.
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2008, 35 (02) : 189 - 205
  • [3] Novel sum rules for the three-point sector of QCD
    Aguilar, A. C.
    Ferreira, M. N.
    Papavassiliou, J.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [4] Gluon propagator and three-gluon vertex with dynamical quarks
    Aguilar, A. C.
    De Soto, F.
    Ferreira, M. N.
    Papavassiliou, J.
    Rodriguez-Quintero, J.
    Zafeiropoulos, S.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (02):
  • [5] Gluon mass scale through nonlinearities and vertex interplay
    Aguilar, A. C.
    Ferreira, M. N.
    Figueiredo, C. T.
    Papavassiliou, J.
    [J]. PHYSICAL REVIEW D, 2019, 100 (09)
  • [6] Nonperturbative Ball-Chiu construction of the three-gluon vertex
    Aguilar, A. C.
    Ferreira, M. N.
    Figueiredo, C. T.
    Papavassiliou, J.
    [J]. PHYSICAL REVIEW D, 2019, 99 (09)
  • [7] Nonperturbative structure of the ghost-gluon kernel
    Aguilar, A. C.
    Ferreira, M. N.
    Figueiredo, C. T.
    Papavassiliou, J.
    [J]. PHYSICAL REVIEW D, 2019, 99 (03)
  • [8] Evidence of ghost suppression in gluon mass scale dynamics
    Aguilar, A. C.
    Binosi, D.
    Figueiredo, C. T.
    Papavassiliou, J.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (03):
  • [9] Schwinger mechanism in linear covariant gauges
    Aguilar, A. C.
    Binosi, D.
    Papavassiliou, J.
    [J]. PHYSICAL REVIEW D, 2017, 95 (03)
  • [10] Unified description of seagull cancellations and infrared finiteness of gluon propagators
    Aguilar, A. C.
    Binosi, D.
    Figueiredo, C. T.
    Papavassiliou, J.
    [J]. PHYSICAL REVIEW D, 2016, 94 (04)