Ulrich Schur bundles on flag varieties

被引:16
作者
Coskun, Izzet [1 ]
Costa, Laura [2 ]
Huizenga, Jack [3 ]
Maria Miro-Roig, Rosa [2 ]
Woolf, Matthew [1 ]
机构
[1] Univ Illinois, Dept Math Stat & CS, Chicago, IL 60607 USA
[2] Fac Matemat, Dept Algebra & Geometria, Gran Via Corts Catatanes 585, Barcelona 08007, Spain
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Flag varieties; Ulrich bundles; Schur bundles; ARITHMETICALLY COHEN-MACAULAY; REPRESENTATION TYPE; SURFACES; MODULES;
D O I
10.1016/j.jalgebra.2016.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study equivariant vector bundles on partial flag varieties arising from Schur ftmctors. We show that a partial flag variety with three or more steps does not admit an Ulrich bundle of this form with respect to the minimal ample class. We classify Ulrich bundles of this form on two-step flag varieties F(1, n - 1; n), F(2, n - 1; n), F(2, n - 2; n), F(k, k + 1; n) and F(k,k + 2; n). We give a conjectural description of the two-step flag varieties which admit such Ulrich bundles. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 96
页数:48
相关论文
共 17 条
[11]   LINEAR MAXIMAL COHEN-MACAULAY MODULES OVER STRICT COMPLETE-INTERSECTIONS [J].
HERZOG, J ;
ULRICH, B ;
BACKELIN, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 71 (2-3) :187-202
[12]   On the normal sheaf of determinantal varieties [J].
Kleppe, Jan O. ;
Miro-Roig, Rosa M. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 719 :173-209
[13]   n-Dimensional Fano varieties of wild representation type [J].
Miro-Roig, Rosa M. ;
Pons-Llopis, Joan .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (10) :1867-1884
[14]   The representation type of rational normal scrolls [J].
Miró-Roig R.M. .
Rendiconti del Circolo Matematico di Palermo, 2013, 62 (1) :153-164
[15]  
Miró-Roig RM, 2013, ALGEBR REPRESENT TH, V16, P1135, DOI 10.1007/s10468-012-9349-z
[16]   SCHUBERT VARIETIES ARE ARITHMETICALLY COHEN-MACAULAY [J].
RAMANATHAN, A .
INVENTIONES MATHEMATICAE, 1985, 80 (02) :283-294
[17]  
Weyman J., 2003, COHOMOLOGY VECTOR BU, V149