Ulrich Schur bundles on flag varieties

被引:16
作者
Coskun, Izzet [1 ]
Costa, Laura [2 ]
Huizenga, Jack [3 ]
Maria Miro-Roig, Rosa [2 ]
Woolf, Matthew [1 ]
机构
[1] Univ Illinois, Dept Math Stat & CS, Chicago, IL 60607 USA
[2] Fac Matemat, Dept Algebra & Geometria, Gran Via Corts Catatanes 585, Barcelona 08007, Spain
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Flag varieties; Ulrich bundles; Schur bundles; ARITHMETICALLY COHEN-MACAULAY; REPRESENTATION TYPE; SURFACES; MODULES;
D O I
10.1016/j.jalgebra.2016.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study equivariant vector bundles on partial flag varieties arising from Schur ftmctors. We show that a partial flag variety with three or more steps does not admit an Ulrich bundle of this form with respect to the minimal ample class. We classify Ulrich bundles of this form on two-step flag varieties F(1, n - 1; n), F(2, n - 1; n), F(2, n - 2; n), F(k, k + 1; n) and F(k,k + 2; n). We give a conjectural description of the two-step flag varieties which admit such Ulrich bundles. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 96
页数:48
相关论文
共 17 条
[1]   MAXIMALLY GENERATED COHEN-MACAULAY MODULES [J].
BRENNAN, JP ;
HERZOG, J ;
ULRICH, B .
MATHEMATICA SCANDINAVICA, 1987, 61 (02) :181-203
[2]   ACM bundles on cubic surfaces [J].
Casanellas, Marta ;
Hartshorne, Robin .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :709-731
[3]   The geometry of Ulrich bundles on del Pezzo surfaces [J].
Coskun, Emre ;
Kulkarni, Rajesh S. ;
Mustopa, Yusuf .
JOURNAL OF ALGEBRA, 2013, 375 :280-301
[4]  
Coskun I., 2016, ULRICH PART IN PRESS
[5]  
Costa L, 2015, MATH ANN, V361, P443, DOI 10.1007/s00208-014-1076-9
[6]   The representation type of Segre varieties [J].
Costa, Laura ;
Miro-Roig, Rosa M. ;
Pons-Llopis, Joan .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1995-2013
[7]   Resultants and Chow forms via exterior syzygies [J].
Eisenbud, D ;
Schreyer, FO ;
Weyman, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :537-579
[8]   Boij-Soderberg Theory [J].
Eisenbud, David ;
Schreyer, Frank-Olaf .
COMBINATORIAL ASPECTS OF COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY: THE ABEL SYMPOSIUM 2009, 2011, 6 :35-+
[9]   Rank 2 arithmetically Cohen-Macaulay bundles on a nonsingular cubic surface [J].
Faenzi, Daniele .
JOURNAL OF ALGEBRA, 2008, 319 (01) :143-186
[10]  
Gross B. H, 2011, ARITHMETIC GEOMETRY, V19, P253