Context Aware 3D CNNs for Brain Tumor Segmentation

被引:28
作者
Chandra, Siddhartha [1 ]
Vakalopoulou, Maria [1 ,2 ]
Fidon, Lucas [1 ,3 ]
Battistella, Enzo [1 ,2 ]
Estienne, Theo [1 ,2 ]
Sun, Roger [1 ,2 ]
Robert, Charlotte [2 ]
Deutsch, Eric [2 ]
Paragios, Nikos [1 ,3 ]
机构
[1] Univ Paris Saclay, Cent Supelec, CVN, Paris, France
[2] Gustave Roussy Inst, Paris, France
[3] TheraPanacea, Paris, France
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II | 2019年 / 11384卷
关键词
Brain tumor segmentation; 3-D fully convolutional CNNs; Fully-connected CRFs;
D O I
10.1007/978-3-030-11726-9_27
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In this work we propose a novel deep learning based pipeline for the task of brain tumor segmentation. Our pipeline consists of three primary components: (i) a preprocessing stage that exploits histogram standardization to mitigate inaccuracies in measured brain modalities, (ii) a first prediction stage that uses the V-Net deep learning architecture to output dense, per voxel class probabilities, and (iii) a prediction refinement stage that uses a Conditional Random Field (CRF) with a bilateral filtering objective for better context awareness. Additionally, we compare the V-Net architecture with a custom 3D Residual Network architecture, trained on a multi-view strategy, and our ablation experiments indicate that V-Net outperforms the 3D ResNet-18 with all bells and whistles, while fully connected CRFs as post processing, boost the performance of both networks. We report competitive results on the BraTS 2018 validation and test set.
引用
收藏
页码:299 / 310
页数:12
相关论文
共 30 条
[1]  
[Anonymous], 2016, BMVC
[2]  
[Anonymous], 2013, INT AGENCY RES CANC
[3]  
Bakas S., 2017, Cancer Imag Arch, DOI [DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q, 10.7937/K9/TCIA.2017.GJQ7R0EF]
[4]  
Bakas S., 2018, ABS181102629 CORR
[5]  
Bakas Spyridon, 2017, TCIA
[6]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[7]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[8]   Fast, Exact and Multi-scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs [J].
Chandra, Siddhartha ;
Kokkinos, Iasonas .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :402-418
[9]  
Chen LC, 2014, ARXIV
[10]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649