Simple method to obtain symmetry harmonics of point groups

被引:3
作者
Boiko, D. L. [1 ]
Feron, P.
Besnard, P.
机构
[1] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
[2] Univ Rennes 1, CNRS, UMR 6082, FOTON ENSSAT, F-22300 Lannion, France
关键词
30;
D O I
10.1063/1.2338040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a simple, self-consistent method to obtain basis functions of irreducible representations of a finite point group. Our method is based on eigenproblem formulation of a projection operator represented as a nonhomogeneous polynomial of angular momentum L. The method is shown to be more efficient than the usual numerical methods when applied to the analysis of high-order symmetry harmonics in cubic and icosahedral groups. For low-order symmetry harmonics the method provides rational coefficients of expansion in the Y-L,Y-M basis. (c) 2006 American Institute of Physics.
引用
收藏
页数:15
相关论文
共 26 条
[1]  
Altmann S. L., 2011, Point-Group Theory Tables
[2]   LATTICE HARMONICS .I. CUBIC GROUPS [J].
ALTMANN, SL ;
CRACKNELL, AP .
REVIEWS OF MODERN PHYSICS, 1965, 37 (01) :19-+
[3]  
ALTMANN SL, 1957, P CAMB PHILOS SOC, V53, P343
[4]  
[Anonymous], GROUP THEORY SOLID S
[5]  
Bethe H, 1929, ANN PHYS-BERLIN, V3, P133
[6]   Electron wave functions in diamond and zinc-blende semiconductors -: art. no. 035204 [J].
Boiko, DL ;
Féron, P ;
Besnard, P .
PHYSICAL REVIEW B, 2006, 73 (03)
[7]  
Bradley C. J., 1972, MATH THEORY SYMMETRY
[8]  
Butler P. H., 1981, POINT GROUP SYMMETRY
[9]   Vandermonde matrices on integer nodes [J].
Eisinberg, A ;
Franze, G ;
Pugliese, P .
NUMERISCHE MATHEMATIK, 1998, 80 (01) :75-85
[10]  
FOLLAND NO, 1977, J MATH PHYS, V18, P3136