A cylindrical reformulation of Heegaard Floer homology

被引:93
|
作者
Lipshitz, Robert [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
GEOMETRY & TOPOLOGY | 2006年 / 10卷
基金
美国国家科学基金会;
关键词
D O I
10.2140/gt.2006.10.955
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We reformulate Heegaard Floer homology in terms of holomorphic curves in the cylindrical manifold Sigma x [0, 1] x R, where Sigma is the Heegaard surface, instead of Sym(g)(Sigma). We then show that the entire invariance proof can be carried out in our setting. In the process, we derive a new formula for the index of the partial derivative-operator in Heegaard Floer homology, and shorten several proofs. After proving invariance, we show that our construction is equivalent to the original construction of Ozsvath-Szabo. We conclude with a discussion of elaborations of Heegaard Floer homology suggested by our construction, as well as a brief discussion of the relation with a program of C Taubes.
引用
收藏
页码:955 / 1097
页数:143
相关论文
共 50 条
  • [1] A cylindrical reformulation of Heegaard Floer homology (vol 10, pg 955, 2006)
    Lipshitz, Robert
    GEOMETRY & TOPOLOGY, 2014, 18 (01) : 17 - 30
  • [2] INVOLUTIVE HEEGAARD FLOER HOMOLOGY
    Hendricks, Kristen
    Manolescu, Ciprian
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (07) : 1211 - 1299
  • [3] Cornered Heegaard Floer Homology
    Douglas, Christopher L.
    Lipshitz, Robert
    Manolescu, Ciprian
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1266) : 1 - +
  • [4] Introduction to Heegaard Floer homology
    Gorsky, E. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (01) : 1 - 35
  • [5] Bordered Heegaard Floer Homology
    Lipshitz, Robert
    Ozsvath, Peter S.
    Thurston, Dylan P.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 255 (1216) : 1 - +
  • [6] Heegaard Floer homology and splicing homology spheres
    Karakurt, Cagri
    Lidman, Tye
    Tweedy, Eamonn
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (01) : 93 - 106
  • [7] Combinatorial Heegaard Floer homology and nice Heegaard diagrams
    Ozsvath, Peter
    Stipsicz, Andras I.
    Szabo, Zoltan
    ADVANCES IN MATHEMATICS, 2012, 231 (01) : 102 - 171
  • [8] Corks, involutions, and Heegaard Floer homology
    Dai, Irving
    Hedden, Matthew
    Mallick, Abhishek
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (06) : 2319 - 2389
  • [9] Heegaard Floer homology as morphism spaces
    Lipshitz, Robert
    Ozsvath, Peter S.
    Thurston, Dylan P.
    QUANTUM TOPOLOGY, 2011, 2 (04) : 381 - 449
  • [10] Heegaard!Floer homology and contact structures
    Ozsváth, P
    Szabó, Z
    DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) : 39 - 61