Insight into the topological defects and dopants in metal-free holey graphene for triiodide reduction in dye-sensitized solar cells

被引:56
作者
Yang, Wang [1 ]
Xu, Xiuwen [1 ]
Hou, Liqiang [1 ]
Ma, Xinlong [1 ]
Yang, Fan [1 ]
Wang, Ying [2 ]
Li, Yongfeng [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; FREE COUNTER ELECTRODES; DOPED GRAPHENE; FREE CATHODES; LOW-COST; EFFICIENCY; PERFORMANCE; NANOPLATELETS; NITROGEN; NANOSHEETS;
D O I
10.1039/c7ta00278e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploiting highly active and stable counter electrodes (CEs) has been a persistent challenge for the practical application of dye-sensitized solar cells (DSSCs). Herein, we present an edge-enhanced modification to fabricate nitrogen doped holey graphene (NHG) by rationally employing N-2 plasma treatment at the exposed edge sites of holey graphene. The as-synthesized NHG exhibits a highly conductive and unique holey scaffold with a large surface area, along with abundant edge-induced topological defects and nitrogen dopants. Benefiting from such unique features, NHG exhibits outstanding electrocatalytic activity and high electrochemical stability for the I-/I-3(-) redox reaction. Furthermore, density functional theory calculations are performed to further elucidate the underlying mechanism behind this encouraging performance, in particular the effect of edge-induced topological defects. The DSSCs based on NHG CEs display a power conversion efficiency of 9.07%, which is even superior to that of Pt (8.19%). These results strongly indicate possibilities for the large-scale fabrication of low-cost and metalfree NHG materials for DSSCs with an I-complex redox couple.
引用
收藏
页码:5952 / 5960
页数:9
相关论文
共 61 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis [J].
Cheng, Jun ;
Hu, P. ;
Ellis, Peter ;
French, Sam ;
Kelly, Gordon ;
Lok, C. Martin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) :1308-1311
[3]   Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells [J].
Das, Santanu ;
Sudhagar, P. ;
Verma, Ved ;
Song, Donghoon ;
Ito, Eisuke ;
Lee, Sang Yun ;
Kang, Yong Soo ;
Choi, WonBong .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (19) :3729-3736
[4]   Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11% [J].
Du, Zhonglin ;
Pan, Zhenxiao ;
Fabregat-Santiago, Francisco ;
Zhao, Ke ;
Long, Donghui ;
Zhang, Hua ;
Zhao, Yixin ;
Zhong, Xinhua ;
Yu, Jong-Sung ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16) :3103-3111
[5]   Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells [J].
Fang, Haiqiu ;
Yu, Chang ;
Ma, Tingli ;
Qiu, Jieshan .
CHEMICAL COMMUNICATIONS, 2014, 50 (25) :3328-3330
[6]   In Situ Growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells [J].
Gong, Feng ;
Wang, Hong ;
Xu, Xin ;
Zhou, Gang ;
Wang, Zhong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (26) :10953-10958
[7]   Recent Advances in Sensitized Mesoscopic Solar Cells [J].
Graetzel, Michael .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1788-1798
[8]   Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J].
Guo, Donghui ;
Shibuya, Riku ;
Akiba, Chisato ;
Saji, Shunsuke ;
Kondo, Takahiro ;
Nakamura, Junji .
SCIENCE, 2016, 351 (6271) :361-365
[9]   Dye-Sensitized Solar Cells [J].
Hagfeldt, Anders ;
Boschloo, Gerrit ;
Sun, Licheng ;
Kloo, Lars ;
Pettersson, Henrik .
CHEMICAL REVIEWS, 2010, 110 (11) :6595-6663
[10]   Device Physics of Dye Solar Cells [J].
Halme, Janne ;
Vahermaa, Paula ;
Miettunen, Kati ;
Lund, Peter .
ADVANCED MATERIALS, 2010, 22 (35) :E210-E234