Predicting Vertical Concentration Profiles in the Marine Atmospheric Boundary Layer With a Markov Chain Random Walk Model

被引:0
作者
Park, Hyungwon John [1 ]
Sherman, Thomas [2 ,3 ]
Freire, Livia S. [4 ]
Wang, Guiquan [3 ]
Bolster, Diogo [3 ]
Xian, Peng [5 ]
Sorooshian, Armin [6 ]
Reid, Jeffrey S. [5 ]
Richter, David H. [3 ]
机构
[1] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
[2] FTS Int LLC, Dulles, VA USA
[3] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[4] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
[5] US Naval Res Lab, Monterey, CA USA
[6] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ USA
基金
美国国家航空航天局; 美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
aerosol transport; large eddy simulation (LES); random walk; sea spray generation; upscaled modeling; atmospheric modeling; SEA-SALT AEROSOL; TRANSPORT; PARTICLES; SPRAY; SIMULATION; EVOLUTION; DIFFUSION; RADIATION; CHANNEL; SOLUTE;
D O I
10.1029/2020JD032731
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In an effort to better represent aerosol transport in mesoscale and global-scale models, large eddy simulations (LES) from the National Center for Atmospheric Research (NCAR) Turbulence with Particles (NTLP) code are used to develop a Markov chain random walk model that predicts aerosol particle profiles in a cloud-free marine atmospheric boundary layer (MABL). The evolution of vertical concentration profiles are simulated for a range of aerosol particle sizes and in a neutral and an unstable boundary layer. For the neutral boundary layer we find, based on the LES statistics and a specific model time step, that there exist significant correlation for particle positions, meaning that particles near the bottom of the boundary are more likely to remain near the bottom of the boundary layer than being abruptly transported to the top, and vice versa. For the unstable boundary layer, a similar time interval exhibits a weaker tendency for an aerosol particle to remain close to its current location compared to the neutral case due to the strong nonlocal convective motions. In the limit of a large time interval, particles have been mixed throughout the MABL and virtually no temporal correlation exists. We leverage this information to parameterize a Markov chain random walk model that accurately predicts the evolution of vertical concentration profiles. The new methodology has significant potential to be applied at the subgrid level for coarser-scale weather and climate models, the utility of which is shown by comparison to airborne field data and global aerosol models.
引用
收藏
页数:22
相关论文
共 82 条
[1]  
Andreas EL, 1998, J PHYS OCEANOGR, V28, P2175, DOI 10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO
[2]  
2
[3]  
[Anonymous], 1937, Transactions of the American Civil Engineers
[4]  
Azimi Dijvejin Z., FIGSHARE, DOI [10.6084/m9.figshare.20334684, DOI 10.6084/M9.FIGSHARE.20334684]
[5]   Turbulent Dispersed Multiphase Flow [J].
Balachandar, S. ;
Eaton, John K. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :111-133
[6]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[7]   Observationally constrained analysis of sea salt aerosol in the marine atmosphere [J].
Bian, Huisheng ;
Froyd, Karl ;
Murphy, Daniel M. ;
Dibb, Jack ;
Darmenov, Anton ;
Chin, Mian ;
Colarco, Peter R. ;
da Silva, Arlindo ;
Kucsera, Tom L. ;
Schill, Gregory ;
Yu, Hongbin ;
Bui, Paul ;
Dollner, Maximilian ;
Weinzierl, Bernadett ;
Smirnov, Alexander .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (16) :10773-10785
[8]  
BLANCHARD DC, 1984, TELLUS B, V36, P118, DOI 10.1111/j.1600-0889.1984.tb00233.x
[9]   Modeling preasymptotic transport in flows with significant inertial and trapping effects - The importance of velocity correlations and a spatial Markov model [J].
Bolster, Diogo ;
Meheust, Yves ;
Le Borgne, Tanguy ;
Bouquain, Jeremy ;
Davy, Phillipe .
ADVANCES IN WATER RESOURCES, 2014, 70 :89-103
[10]  
Brennen C.E., 2005, Fundamentals of multiphase flow, DOI 10.1017/CBO9780511807169