Regularity and hp discontinuous Galerkin finite element approximation of linear elliptic eigenvalue problems with singular potentials

被引:10
作者
Maday, Yvon [1 ,2 ]
Marcati, Carlo [1 ]
机构
[1] Univ Paris Diderot SPC, Sorbonne Univ, LJLL, CNRS, F-75005 Paris, France
[2] Inst Univ France, Paris, France
关键词
hp Graded finite element method; discontinuous Galerkin; elliptic eigenvalue problem; Schrodinger equation; weighted Sobolev spaces; elliptic regularity; P-VERSION; SPECTRAL APPROXIMATION; 1-DIMENSION; EQUATIONS; DGFEM;
D O I
10.1142/S0218202519500295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity in weighted Sobolev spaces of Schrodinger-type eigenvalue problems, and we analyze their approximation via a discontinuous Galerkin (dG) hp finite element method. In particular, we show that, for a class of singular potentials, the eigen-functions of the operator belong to analytic-type non-homogeneous weighted Sobolev spaces. Using this result, we prove that an isotropically graded hp dG method is spectrally accurate, and that the numerical approximation converges with exponential rate to the exact solution. Numerical tests in two and three dimensions confirm the theoretical results and provide an insight into the behavior of the method for varying discretization parameters.
引用
收藏
页码:1585 / 1617
页数:33
相关论文
共 40 条
[1]  
[Anonymous], 1997, Operator Theory: Advances and Applications
[2]   Discontinuous Galerkin approximation of the Laplace eigenproblem [J].
Antonietti, Paola F. ;
Buffa, Annalisa ;
Perugia, Ilaria .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3483-3503
[3]   The deal. II library, version 8.5 [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Davydov, Denis ;
Heister, Timo ;
Heltai, Luca ;
Kronbichler, Martin ;
Maier, Matthias ;
Pelteret, Jean-Paul ;
Turcksin, Bruno ;
Wells, David .
JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (03) :137-145
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]  
Balay S., 2017, PETSc web page
[6]   Numerical Analysis of Nonlinear Eigenvalue Problems [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :90-117
[7]  
Canuto C, 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[8]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL, VII
[9]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[10]   Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains [J].
Costabel, M ;
Dauge, M ;
Schwab, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (04) :575-622