On the largest convex subsets in Minkowski sums

被引:4
作者
Tiwary, Hans Raj [1 ,2 ]
机构
[1] Charles Univ Prague, Dept Appl Math, KAM, CR-11800 Prague 1, Czech Republic
[2] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-11800 Prague 1, Czech Republic
关键词
Minkowski sum; Combinatorics of planar point sets; Convex subsets; Combinatorial problems;
D O I
10.1016/j.ipl.2014.02.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given two point sets A, B subset of R-2 of n points each, the Minkowski sum A + B has a quadratic number of points in general. How large can a subset S subset of A + B be if S is required to be convex? We prove that when A and B are both convex then S can have only O (n log n) points. This complements the existing results that are known when A and B are not in convex position or when B = A and A is convex. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:405 / 407
页数:3
相关论文
共 4 条
[1]  
Buchin K., 2009, P 7 JAP C COMP GEOM
[2]  
Eisenbrand F, 2008, ELECTRON J COMB, V15
[3]   The convex dimension of a graph [J].
Halman, Nir ;
Onn, Shmuel ;
Rothbjum, Uriel G. .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (11) :1373-1383
[4]   Convex combinatorial optimization [J].
Onn, S ;
Rothblum, UG .
DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) :549-566