Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers

被引:11
作者
Ostrowski, M. [1 ]
Blachowski, B. [1 ]
Bochenski, M. [2 ]
Piernikarski, D. [2 ]
Filipek, P. [3 ]
Janicki, W. [4 ]
机构
[1] Polish Acad Sci, Inst Fundamental Technol Res, Ul Pawinskiego 5b, PL-02106 Warsaw, Poland
[2] Lublin Univ Technol, Fac Mech Engn, Ul Nadbystrzycka 36, PL-20618 Lublin, Poland
[3] Lublin Univ Technol, Fac Elect Engn & Comp Sci, Ul Nadbystrzycka 38A, PL-20618 Lublin, Poland
[4] Marie Curie Sklodowska Univ, Fac Earth Sci & Spatial Management, Al Krasnicka 2d, PL-20718 Lublin, Poland
关键词
energy harvesting; velocity amplification; nonlinear electromagnetic circuit; spring bumper; quarter car model;
D O I
10.24425/bpasts.2020.135384
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main drawback of vibration-based energy harvesting is its poor efficiency due to small amplitudes of vibration and low sensitivity at frequencies far from resonant frequency. The performance of electromagnetic energy harvester can be improved by using mechanical enhancements such as mechanical amplifiers or spring bumpers. The mechanical amplifiers increase range of movement and velocity, improving also significantly harvester efficiency for the same level of excitation. As a result of this amplitude of motion is much larger comparing to the size of the electromagnetic coil. This in turn imposes the need for modelling of electromagnetic circuit parameters as the function of the moving magnet displacement. Moreover, high velocities achieved by the moving magnet reveal nonlinear dynamics in the electromagnetic circuit of the energy harvester. Another source of nonlinearity is the collision effect between magnet and spring bumpers. It has been shown that this effect should be carefully considered during design process of the energy harvesting device. The present paper investigates the influence of the above-mentioned nonlinearities on power level generated by the energy harvester. A rigorous model of the electromagnetic circuit, derived with aid of the Ilamilton's principle of the least action, has been proposed. It includes inductance of the electromagnetic coil as the function of the moving magnet position. Additionally, nonlinear behaviour of the overall electromagnetic device has been tested numerically for the case of energy harvester attached to the quarter car model moving on random road profiles. Such a source of excitation provides wide band of excitation frequencies, which occur in variety of real-life applications.
引用
收藏
页码:1373 / 1383
页数:11
相关论文
共 50 条
  • [31] Design and Fabrication of Low Frequency Driven Energy Harvester Using Electromagnetic Conversion
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2013, 14 (03) : 143 - 147
  • [32] Design of high-efficiency electromagnetic energy harvester based on a rolling magnet
    Zhang, L. B.
    Dai, H. L.
    Yang, Y. W.
    Wang, L.
    ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 202 - 210
  • [33] Design and experimental assessment of an electromagnetic energy harvester based on slotted disc springs
    Castagnetti, Davide
    Dallari, Federico
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2017, 231 (1-2) : 89 - 99
  • [34] Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power
    Lee, Jaewook
    Yoon, Sang Won
    JOURNAL OF MAGNETICS, 2013, 18 (03) : 283 - 288
  • [35] Nonlinear Dynamics and Performance Enhancement Strategies for the Magnetic Levitating Bistable Electromagnetic Energy Harvester
    Junjie Xu
    Yonggang Leng
    Xukun Su
    Xiaoyu Chen
    Fei Sun
    Journal of Vibration Engineering & Technologies, 2024, 12 : 3963 - 3976
  • [36] Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations
    Khan, Farid
    Sassani, Farrokh
    Stoeber, Boris
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (07): : 1323 - 1335
  • [37] Mechanical Energy Harvester With Ultralow Threshold Rectification Based on SSHI Nonlinear Technique
    Garbuio, Lauric
    Lallart, Mickael
    Guyomar, Daniel
    Richard, Claude
    Audigier, David
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (04) : 1048 - 1056
  • [39] Analysis and optimal design of a vibration isolation system combined with electromagnetic energy harvester
    Diala, Uchenna
    Mofidian, S. M. Mahdi
    Lang, Zi-Qiang
    Bardaweel, Hamzeh
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (16) : 2382 - 2395
  • [40] A novel design of an array of pendulum-based electromagnetic broadband vibration energy harvester
    Rajarathinam, Murugesan
    Awrejcewicz, Jan
    Ali, Shaikh Faruque
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 208