An example of non-decreasing solution for the KdV equation posed on a bounded interval

被引:8
作者
Doronin, Gleb Germanovitch [1 ]
Natali, Fabio M. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
DE-VRIES EQUATION; CONTROLLABILITY;
D O I
10.1016/j.crma.2014.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An initial-boundary value problem for the KdV equation posed on a bounded interval is considered. The theory of Jacobi elliptic functions is used to obtain a new kind of stationary waves which are spatially periodic with a period equal to an interval length. The properties of those solutions are studied. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:421 / 424
页数:4
相关论文
共 12 条
[1]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[2]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[3]   Exact controllability of a nonlinear korteweg de vries equation on a critical spatial domain [J].
Cerpa, Eduardo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :877-899
[4]   Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain [J].
Cerpa, Eduardo ;
Crepeau, Emmanuelle .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :457-475
[5]   PERIODIC TRAVELING-WAVE SOLUTIONS OF NONLINEAR DISPERSIVE EVOLUTION EQUATIONS [J].
Chen, Hongqiu ;
Bona, Jerry L. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) :4841-4873
[6]  
Coron JM, 2004, J EUR MATH SOC, V6, P367
[7]  
Faminskii AV, 2010, ELECTRON J DIFFER EQ
[8]  
Goubet O., 2007, ADV DIFFERENTIAL EQU, V12, P221
[9]   WEAK NONLINEAR DISPERSIVE WAVES - DISCUSSION CENTERED AROUND KORTEWEG-DE VRIES EQUATION [J].
JEFFREY, A ;
KAKUTANI, T .
SIAM REVIEW, 1972, 14 (04) :582-+
[10]  
Menzala GP, 2002, Q APPL MATH, V60, P111