Algebras of finite representation type arising from maximal rigid objects

被引:3
作者
Buan, Aslak Bakke [1 ]
Palu, Yann [2 ]
Reiten, Idun [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Fac Sci, LAMFA, F-80039 Amiens 1, France
关键词
Tilting objects; Rigid objects; 2-CY categories; Finite representation type; Finite dimensional algebras; 2-CALABI-YAU CATEGORIES; TRIANGULATED CATEGORIES; CLUSTER CATEGORIES; QUIVERS;
D O I
10.1016/j.jalgebra.2015.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete classification of all algebras appearing as endomorphism algebras of maximal rigid objects in standard 2-Calabi-Yau categories of finite type. Such categories are equivalent to certain orbit categories of derived categories of Dynkin algebras. It turns out that with one exception, all the algebras that occur are 2-Calabi-Yau-tilted, and therefore appear in an earlier classification by Bertani-Okland and Oppermann. We explain this phenomenon by investigating the subcategories generated by rigid objects in standard 2-Calabi Yau categories of finite type. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:426 / 449
页数:24
相关论文
共 32 条
[1]   τ-tilting theory [J].
Adachi, Takahide ;
Iyama, Osamu ;
Reiten, Idun .
COMPOSITIO MATHEMATICA, 2014, 150 (03) :415-452
[2]   ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES [J].
Amiot, Claire .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2007, 135 (03) :435-474
[3]   CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL [J].
Amiot, Claire .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) :2525-2590
[4]  
[Anonymous], 1995, CAMBRIDGE STUD ADV M
[5]  
Assem I., 2006, LOND MATH SOC STUD T, V1, P65, DOI DOI 10.1017/CB09780511614309
[6]   The Grothendieck group of a cluster category [J].
Barot, M. ;
Kussin, D. ;
Lenzing, H. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :33-46
[7]   REPRESENTATION-FINITE ALGEBRAS AND MULTIPLICATIVE BASES [J].
BAUTISTA, R ;
GABRIEL, P ;
ROITER, AV ;
SALMERON, L .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :217-285
[8]   Mutating loops and 2-cycles in 2-CY triangulated categories [J].
Bertani-Okland, Marco Angel ;
Oppermann, Steffen .
JOURNAL OF ALGEBRA, 2011, 334 (01) :195-218
[9]   Cluster structures for 2-Calabi-Yau categories and unipotent groups [J].
Buan, A. B. ;
Iyama, O. ;
Reiten, I. ;
Scott, J. .
COMPOSITIO MATHEMATICA, 2009, 145 (04) :1035-1079
[10]  
Buan AB, 2007, T AM MATH SOC, V359, P323