DeepPR: Progressive Recovery for Interdependent VNFs With Deep Reinforcement Learning

被引:13
|
作者
Ishigaki, Genya [1 ]
Devic, Siddartha [1 ]
Gour, Riti [1 ]
Jue, Jason P. [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
关键词
Servers; Monitoring; Reinforcement learning; Maintenance engineering; Heuristic algorithms; Resource management; Optimization; Resource allocation; deep reinforcement learning (Deep RL); network recovery; network function virtualization (NFV); interdependent networks; NETWORK RECOVERY; SYSTEMS; SERVICE; NFV;
D O I
10.1109/JSAC.2020.3000402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing demand for diverse network services entails more flexible networks that are realized by virtualized network equipment and functions. When such advanced network systems face a massive failure by natural disasters or attacks, the recovery of the entire system may be conducted progressively due to limited repair resources. The prioritization of network equipment in the recovery phase influences the interim computation and communication capability of systems since the systems are operated under partial functionality. Hence, finding the best recovery order is a critical problem, which is further complicated by virtualization due to the interdependence between virtual network functions and infrastructure elements. This paper deals with a progressive recovery problem under limited resources in networks with VNFs, where some interdependencies exist. We prove the NP-hardness of the progressive recovery problem and approach the optimum solution by introducing DeepPR, a progressive recovery technique based on Deep Reinforcement Learning (Deep RL). Our simulation results indicate that DeepPR can achieve near-optimal solutions in certain networks and is more robust to adversarial failures, compared to a baseline heuristic algorithm.
引用
收藏
页码:2386 / 2399
页数:14
相关论文
共 50 条
  • [1] DeepPR: Incremental Recovery for Interdependent VNFs with Deep Reinforcement Learning
    Ishigaki, Genya
    Devic, Siddartha
    Gour, Riti
    Jue, Jason P.
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [2] Multi-Agent Deep Reinforcement Learning-Based Interdependent Computing for Mobile Edge Computing-Assisted Robot Teams
    Cui, Qimei
    Zhao, Xiyu
    Ni, Wei
    Hu, Zheng
    Tao, Xiaofeng
    Zhang, Ping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6599 - 6610
  • [3] Deep Reinforcement Learning for Network Service Recovery in Large-scale Failures
    Akashi, Kazuaki
    Fukuda, Nobukazu
    Kanai, Shunsuke
    Tayama, Kenichi
    2023 19TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT, CNSM, 2023,
  • [4] Adaptive Prioritization and Task Offloading in Vehicular Edge Computing Through Deep Reinforcement Learning
    Uddin, Ashab
    Sakr, Ahmed Hamdi
    Zhang, Ning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5038 - 5052
  • [5] Applications of Deep Reinforcement Learning in Communications and Networking: A Survey
    Luong, Nguyen Cong
    Hoang, Dinh Thai
    Gong, Shimin
    Niyato, Dusit
    Wang, Ping
    Liang, Ying-Chang
    Kim, Dong In
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (04): : 3133 - 3174
  • [6] Deep Reinforcement Learning for Internet of Things: A Comprehensive Survey
    Chen, Wuhui
    Qiu, Xiaoyu
    Cai, Ting
    Dai, Hong-Ning
    Zheng, Zibin
    Zhang, Yan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03): : 1659 - 1692
  • [7] Open RAN Slicing for MVNOs With Deep Reinforcement Learning
    Filali, Abderrahime
    Mlika, Zoubeir
    Cherkaoui, Soumaya
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 18711 - 18725
  • [8] ReCARL: Resource Allocation in Cloud RANs With Deep Reinforcement Learning
    Xu, Zhiyuan
    Tang, Jian
    Yin, Chengxiang
    Wang, Yanzhi
    Xue, Guoliang
    Wang, Jing
    Gursoy, M. Cenk
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (07) : 2533 - 2545
  • [9] Augmented Deep Reinforcement Learning for Online Energy Minimization of Wireless Powered Mobile Edge Computing
    Chen, Xiaojing
    Dai, Weiheng
    Ni, Wei
    Wang, Xin
    Zhang, Shunqing
    Xu, Shugong
    Sun, Yanzan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (05) : 2698 - 2710
  • [10] Deep Reinforcement Learning-Based Service-Oriented Resource Allocation in Smart Grids
    Xi, Linhan
    Wang, Ying
    Wang, Yang
    Wang, Zhihui
    Wang, Xue
    Chen, Yuanbin
    IEEE ACCESS, 2021, 9 (09): : 77637 - 77648