Role of mrgA in peroxide and light stress in the cyanobacterium Synechocystis sp PCC 6803

被引:17
|
作者
Foster, Jamie S. [1 ]
Havemann, Stephanie A. [1 ]
Singh, Abhay K. [2 ]
Sherman, Louis A. [2 ]
机构
[1] Univ Florida, Space Life Sci Lab, Dept Microbiol & Cell Sci, Kennedy Space Ctr, FL 32899 USA
[2] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
关键词
cyanobacteria; Synechocystis; mrgA; SP STRAIN PCC; BACILLUS-SUBTILIS; OXIDATIVE-STRESS; BACTERIAL COMMUNITY; HYDROGEN-PEROXIDE; GENE-EXPRESSION; BINDING PROTEIN; DPSA GENE; PCC-6803; ACID;
D O I
10.1111/j.1574-6968.2009.01548.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In the unicellular cyanobacterium Synechocystis sp. PCC 6803, the mrgA gene is part of the PerR regulon that is upregulated during peroxide stress. We determined that an Delta mrgA mutant was highly sensitive to low peroxide levels and that the mutant upregulated a gene cluster (sll1722-26) that encoded enzymes involved with exopolymeric substance (EPS) production. We made mutants in this EPS cluster in both a wild type and Delta mrgA background and studied the responses to oxidative stress by measuring cell damage with LIVE/DEAD stain. We show that Synechocystis sp. PCC 6803 becomes highly sensitive to oxidative stress when either mrgA or the sll1722-26 EPS components are deleted. The results suggest that the deletion of the EPS cluster makes a cell highly susceptible to cell damage, under moderate oxidative stress conditions. Mutations in either mrgA or the EPS cluster also result in cells that are more light and peroxide sensitive, and produce significantly less EPS material than in wild type. In this study, we show that in the absence of MrgA, which is known to be involved in the storage or mobilization of iron, cells can be more easily damaged by exogenous oxidative and light stress.
引用
收藏
页码:298 / 304
页数:7
相关论文
共 50 条
  • [31] Characterization of a stress-responsive operon in the cyanobacterium Synechocystis sp strain PCC 6803
    Singh, AK
    Sherman, LA
    GENE, 2002, 297 (1-2) : 11 - 19
  • [32] Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp strain PCC 6803
    Fulda, Sabine
    Mikkat, Stefan
    Huang, Fang
    Huckauf, Jana
    Marin, Kay
    Norling, Birgitta
    Hagemann, Martin
    PROTEOMICS, 2006, 6 (09) : 2733 - 2745
  • [33] Analysis of oxidative stress-responsive regulons in a cyanobacterium Synechocystis sp PCC 6803
    Kobayashi, M
    Katayama, M
    Ikeuchi, M
    PLANT AND CELL PHYSIOLOGY, 2004, 45 : S153 - S153
  • [34] Investigation of the Functional Role of Ctp Proteins in the Cyanobacterium Synechocystis sp. PCC 6803
    N. B. Ivleva
    K. V. Sidoruk
    H. B. Pakrasi
    S. V. Shestakov
    Microbiology, 2002, 71 : 433 - 437
  • [35] The role of hspA in Synechocystis sp PCC 6803 in salt stress management
    Asadulghani
    Nitta, K
    Kaneko, Y
    Fukuzawa, H
    Nakamoto, H
    PLANT AND CELL PHYSIOLOGY, 2004, 45 : S119 - S119
  • [36] Thermosensitivity of oxygen evolution in a mesophilic cyanobacterium, Synechocystis sp PCC 6803
    Aminaka, R
    Kashino, Y
    Satoh, K
    PLANT AND CELL PHYSIOLOGY, 2006, 47 : S28 - S28
  • [37] CHARACTERIZATION OF THE MURF GENE OF THE CYANOBACTERIUM SYNECHOCYSTIS SP PCC-6803
    MALAKHOV, MP
    LOS, DA
    WADA, H
    SEMENENKO, VE
    MURATA, N
    MICROBIOLOGY-SGM, 1995, 141 : 163 - 169
  • [38] Effect of Gravity Changes on the Cyanobacterium Synechocystis sp. PCC 6803
    N. Erdmann
    U. Effmert
    S. Fulda
    S. Oheim
    Current Microbiology, 1997, 35 : 348 - 355
  • [39] Scavenging Systems for Reactive Carbonyls in the Cyanobacterium Synechocystis sp PCC 6803
    Shimakawa, Ginga
    Suzuki, Mayumi
    Yamamoto, Eriko
    Nishi, Akiko
    Saito, Ryota
    Sakamoto, Katsuhiko
    Yamamoto, Hiroshi
    Makino, Amane
    Miryake, Chikahiro
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2013, 77 (12) : 2441 - 2448
  • [40] Effect of gravity changes on the cyanobacterium Synechocystis sp. PCC 6803
    Erdmann, N
    Effmert, U
    Fulda, S
    Oheim, S
    CURRENT MICROBIOLOGY, 1997, 35 (06) : 348 - 355