On the box dimension of typical measures

被引:7
|
作者
Myjak, J [1 ]
Rudnicki, R
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
[2] WMS AGH, PL-30059 Krakow, Poland
[3] Polish Acad Sci, Inst Math, PL-40007 Katowice, Poland
[4] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
来源
MONATSHEFTE FUR MATHEMATIK | 2002年 / 136卷 / 02期
关键词
box dimension; measure; residual subset;
D O I
10.1007/s006050200039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, rho) be a complete metric space and let M be the space of all probability Borel measures on X. We give some estimations of the upper and lower box dimensions of the typical (in the sense of Baire category) measure in M.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [21] On the average box dimensions of graphs of typical continuous functions
    Adam-Day, B.
    Ashcroft, C.
    Olsen, L.
    Pinzani, N.
    Rizzoli, A.
    Rowe, J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (02) : 263 - 302
  • [22] On the average box dimensions of graphs of typical continuous functions
    B. Adam-Day
    C. Ashcroft
    L. Olsen
    N. Pinzani
    A. Rizzoli
    J. Rowe
    Acta Mathematica Hungarica, 2018, 156 : 263 - 302
  • [23] General fractal dimensions of typical sets and measures
    Achour, Rim
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2024, 490
  • [24] Arc Fault Recognition Method Using Box Dimension and Information Dimension As Discriminating Features
    Ma Shaohua
    Bao Jieqiu
    Cai Zhiyuan
    Guo Jiawen
    2013 INTERNATIONAL CONFERENCE ON PROCESS EQUIPMENT, MECHATRONICS ENGINEERING AND MATERIAL SCIENCE, 2013, 331 : 137 - 140
  • [25] BOX DIMENSION OF THE GRAPH OF THE LIMIT OF A SEQUENCE OF HOLDER FUNCTIONS
    Biacino, Loredana
    REAL ANALYSIS EXCHANGE, 2011, 37 (01) : 117 - 128
  • [26] FRACTIONAL INTEGRALS OF THE WEIERSTRASS FUNCTIONS: THE EXACT BOX DIMENSION
    Zhou Songping Institute of Mathematics Zhejiang Institute of Sciences and TechnologyHangzhou 310018P. R. ChinaYao Kui and Su Weiyi Department of Mathematics Nanjing University Nanjing 210093 P. R. China
    AnalysisinTheoryandApplications, 2004, (04) : 332 - 341
  • [27] Construction and box dimension of recurrent fractal interpolation surfaces
    Liang, Zhen
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (03) : 261 - 288
  • [28] Construction and box dimension of the composite fractal interpolation function
    Dai, Zhong
    Liu, Shutang
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [29] Box dimension of generic Hölder level sets
    Buczolich, Zoltan
    Maga, Balazs
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (03): : 531 - 554
  • [30] Entropy numbers and box dimension of polynomials and holomorphic functions
    Carando, Daniel
    D'Andrea, Carlos
    Torres, Leodan A.
    Turco, Pablo
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (02) : 567 - 580