SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM

被引:820
作者
Wagner, Thorsten [1 ]
Merino, Felipe [1 ]
Stabrin, Markus [1 ]
Moriya, Toshio [1 ]
Antoni, Claudia [1 ]
Apelbaum, Amir [1 ]
Hagel, Philine [1 ]
Sitsel, Oleg [1 ]
Raisch, Tobias [1 ]
Prumbaum, Daniel [1 ]
Quentin, Dennis [1 ]
Roderer, Daniel [1 ]
Tacke, Sebastian [1 ]
Siebolds, Birte [1 ]
Schubert, Evelyn [1 ]
Shaikh, Tanvir R. [1 ]
Lill, Pascal [1 ]
Gatsogiannis, Christos [1 ]
Raunser, Stefan [1 ]
机构
[1] Max Planck Inst Mol Physiol, Dept Struct Biochem, Otto Hahn Str 11, D-44227 Dortmund, Germany
基金
欧洲研究理事会;
关键词
ELECTRON; SELECTION; MECHANISM; PICKING;
D O I
10.1038/s42003-019-0437-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Selecting particles from digital micrographs is an essential step in single-particle electron cryomicroscopy (cryo-EM). As manual selection of complete datasets-typically comprising thousands of particles-is a tedious and time-consuming process, numerous automatic particle pickers have been developed. However, non-ideal datasets pose a challenge to particle picking. Here we present the particle picking software crYOLO which is based on the deep-learning object detection system You Only Look Once (YOLO). After training the network with 200-2500 particles per dataset it automatically recognizes particles with high recall and precision while reaching a speed of up to five micrographs per second. Further, we present a general crYOLO network able to pick from previously unseen datasets, allowing for completely automated on-the-fly cryo-EM data preprocessing during data acquisition. crYOLO is available as a standalone program under http://sphire.mpg.de/ and is distributed as part of the image processing workflow in SPHIRE.
引用
收藏
页数:13
相关论文
共 39 条
[1]  
[Anonymous], RECTIFIER NONLINEARI
[2]   Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules [J].
Baxter, William T. ;
Grassucci, Robert A. ;
Gao, Haixiao ;
Frank, Joachim .
JOURNAL OF STRUCTURAL BIOLOGY, 2009, 166 (02) :126-132
[3]  
Bepler T, 2018, LECT N BIOINFORMAT, V10812, P245
[4]  
Chollet F., 2015, Keras
[5]   Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy [J].
de la Rosa-Trevin, J. M. ;
Quintana, A. ;
del Cano, L. ;
Zaldivar, A. ;
Foche, I. ;
Gutierrez, J. ;
Gomez-Blanco, J. ;
Burguet-Castell, J. ;
Cuenca-Alba, J. ;
Abrishami, V. ;
Vargas, J. ;
Oton, J. ;
Sharov, G. ;
Vilas, J. L. ;
Navas, J. ;
Conesa, P. ;
Kazemi, M. ;
Marabini, R. ;
Sorzano, C. O. S. ;
Carazo, J. M. .
JOURNAL OF STRUCTURAL BIOLOGY, 2016, 195 (01) :93-99
[6]   A syringe-like injection mechanism in Photorhabdus luminescens toxins [J].
Gatsogiannis, Christos ;
Lang, Alexander E. ;
Meusch, Dominic ;
Pfaumann, Vanda ;
Hofnagel, Oliver ;
Benz, Roland ;
Aktories, Klaus ;
Raunser, Stefan .
NATURE, 2013, 495 (7442) :520-523
[7]  
Goutte C, 2005, LECT NOTES COMPUT SC, V3408, P345
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise [J].
Henderson, Richard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (45) :18037-18041
[10]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269