High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

被引:9
作者
Deng, Shawn [1 ]
Hassan, Mohammad K. [2 ]
Nalawade, Amol [2 ]
Perry, Kelly A. [3 ]
More, Karren L. [3 ]
Mauritz, Kenneth A. [2 ]
McDonnell, Marshall T. [4 ]
Keffer, David J. [5 ]
Mays, Jimmy W. [1 ,6 ]
机构
[1] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[2] Univ So Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39406 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
Proton exchange membrane; Poly(ethylene glycol); Poly(1,3-cyclohexadiene); FUEL-CELL APPLICATIONS; ELECTROLYTE MEMBRANES; SULFONATED POLYBENZIMIDAZOLES; FLUORINATED POLYMER; POLY(ARYLENE ETHER); MOLECULAR-DYNAMICS; MAIN-CHAIN; TRANSPORT; WATER; MICROSTRUCTURE;
D O I
10.1016/j.polymer.2015.09.033
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Hot (at 120 degrees C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. Presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology with higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. This study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:208 / 217
页数:10
相关论文
共 71 条
  • [1] Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes
    Adjemian, KT
    Srinivasan, S
    Benziger, J
    Bocarsly, AB
    [J]. JOURNAL OF POWER SOURCES, 2002, 109 (02) : 356 - 364
  • [2] THE GROTTHUSS MECHANISM
    AGMON, N
    [J]. CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) : 456 - 462
  • [3] Thermostable ionomeric filled membrane for H2/O2 fuel cell
    Baradie, B
    Poinsignon, C
    Sanchez, JY
    Piffard, Y
    Vitter, G
    Bestaoui, N
    Foscallo, D
    Denoyelle, A
    Delabouglise, D
    Vaujany, M
    [J]. JOURNAL OF POWER SOURCES, 1998, 74 (01) : 8 - 16
  • [4] Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane
    Bauer, F
    Denneler, S
    Willert-Porada, M
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (07) : 786 - 795
  • [5] Sulfonation of polysulfones: Suitability of the sulfonated materials for asymmetric membrane preparation
    Blanco, JF
    Nguyen, QT
    Schaetzel, P
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 84 (13) : 2461 - 2473
  • [6] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [7] Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis(aminophenoxyphenyl)sulfone
    Chen, Shouwen
    Yin, Yan
    Kita, Hidetoshi
    Okamoto, Ken-Ichi
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (13) : 2797 - 2811
  • [8] Poly(sulfonated phenylene)-block-poly(arylene ether sulfone) copolymer for polymer electrolyte fuel cell application
    Chen, Shouwen
    Chen, Kangcheng
    Zhang, Xuan
    Hara, Ryousuke
    Endo, Nobutaka
    Higa, Mitsuru
    Okamoto, Ken-ichi
    Wang, Lianjun
    [J]. POLYMER, 2013, 54 (01) : 236 - 245
  • [9] Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications
    Chikashige, Y
    Chikyu, Y
    Miyatake, K
    Watanabe, M
    [J]. MACROMOLECULES, 2005, 38 (16) : 7121 - 7126
  • [10] Hydrocarbon-based fuel cell membranes: Sulfonated crosslinked poly(1,3-cyclohexadiene) membranes for high temperature polymer electrolyte fuel cells
    Deng, Suxiang
    Hassan, Mohammad K.
    Mauritz, Kenneth A.
    Mays, Jimmy W.
    [J]. POLYMER, 2015, 73 : 17 - 24