共 71 条
High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)
被引:9
作者:
Deng, Shawn
[1
]
Hassan, Mohammad K.
[2
]
Nalawade, Amol
[2
]
Perry, Kelly A.
[3
]
More, Karren L.
[3
]
Mauritz, Kenneth A.
[2
]
McDonnell, Marshall T.
[4
]
Keffer, David J.
[5
]
Mays, Jimmy W.
[1
,6
]
机构:
[1] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[2] Univ So Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39406 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
来源:
基金:
美国国家科学基金会;
关键词:
Proton exchange membrane;
Poly(ethylene glycol);
Poly(1,3-cyclohexadiene);
FUEL-CELL APPLICATIONS;
ELECTROLYTE MEMBRANES;
SULFONATED POLYBENZIMIDAZOLES;
FLUORINATED POLYMER;
POLY(ARYLENE ETHER);
MOLECULAR-DYNAMICS;
MAIN-CHAIN;
TRANSPORT;
WATER;
MICROSTRUCTURE;
D O I:
10.1016/j.polymer.2015.09.033
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
Hot (at 120 degrees C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. Presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology with higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. This study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:208 / 217
页数:10
相关论文