Analysis of the Influence of the MVDR Filter Parameters on the Performance of SSVEP-Based BCI

被引:0
作者
Lima, Lucas Brazzarola [1 ]
Viana, Ramon Fernandes [1 ]
Rosa-Jr, Jose Martins [1 ]
Arruda Leite, Harlei Miguel [1 ]
Vargas, Guilherme Vettorazzi [2 ]
Carvalho, Sarah Negreiros [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Elect Engn, Ouro Preto, Brazil
[2] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, Brazil
来源
INTELLIGENT SYSTEMS, PT I | 2022年 / 13653卷
关键词
Brain-computer interface; Steady-state visually evoked potential; Minimum variance distortionless response; Spatiotemporal filtering;
D O I
10.1007/978-3-031-21686-2_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-Computer Interface (BCI) is a communication method based on brain signals analysis. The interface enables controlling applications such as a wheelchair with minimal muscle effort, making BCI systems attractive in assistive technology development. Currently, Steady-State Visually Evoked Potential (SSVEP) represents one of the most promising BCI paradigms, since a specific physiological brain response is evoked when a subject is exposed to continuously flickering visual stimuli. In this study, we evaluated how the parameters of the Minimum Variance Distortionless Response (MVDR) filter impact the performance of the SSVEP-based BCI. Three parameters were analyzed: filter order, number of EEG signals combined at the filter input, and number of electrodes employed for filtering. Our results show that it is convenient to employ fewer electrodes, as they are closer to the visual cortex region, and to combine them spatially, using low filter orders. The best performance, among the tested configurations, was 80.20 +/- 6.65%, obtained with filter order nine, employing nine EEG signals and spatially combining the inputs with eight signals at a time.
引用
收藏
页码:313 / 324
页数:12
相关论文
共 17 条
[1]   A generalized MVDR spectrum [J].
Benesty, J ;
Chen, JD ;
Huang, YT .
IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (12) :827-830
[2]   Space-time filter for SSVEP brain-computer interface based on the minimum variance distortionless response [J].
Carvalho, Sarah Negreiros de ;
Vargas, Guilherme Vettorazzi ;
da Silva Costa, Thiago Bulhoes ;
de Arruda Leite, Harlei Miguel ;
Coradine, Luis ;
Boccato, Levy ;
Soriano, Diogo Coutinho ;
Attux, Romis .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (05) :1133-1150
[3]  
Graimann B, 2010, FRONT COLLECT, P1, DOI 10.1007/978-3-642-02091-9_1
[4]   How many people could use an SSVEP BCI? [J].
Guger, Christoph ;
Allison, Brendan Z. ;
Grosswindhager, Bernhard ;
Prueck, Robert ;
Hintermueller, Christoph ;
Kapeller, Christoph ;
Bruckner, Markus ;
Krausz, Gunther ;
Edlinger, Guenter .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[5]  
Haykin S, 2010, Neural Networks And Learning Machines, Vthird
[6]   Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis [J].
Liu, Bingchuan ;
Chen, Xiaogang ;
Shi, Nanlin ;
Wang, Yijun ;
Gao, Shangkai ;
Gao, Xiaorong .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :1998-2007
[7]   A systematic review on hybrid EEG/fNIRS in brain-computer interface [J].
Liu, Ziming ;
Shore, Jeremy ;
Wang, Miao ;
Yuan, Fengpei ;
Buss, Aaron ;
Zhao, Xiaopeng .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68 (68)
[8]   The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces [J].
Neumann, Wolf-Julian ;
Sorkhabi, Majid Memarian ;
Benjaber, Moaad ;
Feldmann, Lucia K. ;
Saryyeva, Assel ;
Krauss, Joachim K. ;
Contarino, Maria Fiorella ;
Sieger, Tomas ;
Jech, Robert ;
Tinkhauser, Gerd ;
Pollo, Claudio ;
Palmisano, Chiara ;
Isaias, Ioannis U. ;
Cummins, Daniel D. ;
Little, Simon J. ;
Starr, Philip A. ;
Kokkinos, Vasileios ;
Gerd-Helge, Schneider ;
Herrington, Todd ;
Brown, Peter ;
Richardson, R. Mark ;
Kuhn, Andrea A. ;
Denison, Timothy .
BRAIN STIMULATION, 2021, 14 (05) :1301-1306
[9]   A Bayesian Multiple Kernel Learning Algorithm for SSVEP BCI Detection [J].
Oikonomou, Vangelis P. ;
Nikolopoulos, Spiros ;
Kompatsiaris, Ioannis .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (05) :1990-2001
[10]  
Oppenheim A. V., 1999, DISCRETE TIME SIGNAL