FUNCTIONS OF VANISHING MEAN OSCILLATION ASSOCIATED TO NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING DAVIES-GAFFNEY ESTIMATES

被引:2
作者
The Anh Bui [1 ]
机构
[1] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
关键词
Non-negative self-adjoint operator; Hardy space; BMO; VMO; space of homogeneous type; HARDY-SPACES;
D O I
10.2748/tmj/1404911863
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a nonnegative self-adjoint operator satisfying Davies-Gaffney estimates on L-2(X), where X is a metric space. In this paper, we introduce and develop a new function space VMOL (X) of vanishing mean oscillation type associated to L. We then prove that the dual of VMOL (X) is the Hardy space H-L (X) which was investigated in [18]. Some characterizations of VMOL (X) are also established.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 24 条
  • [1] [Anonymous], 1998, ASTERISQUE
  • [2] Riesz transform on manifolds and heat kernel regularity
    Auscher, P
    Coulhon, T
    Duong, XT
    Hofmann, S
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06): : 911 - 957
  • [3] Hardy spaces and divergence operators on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) : 148 - 184
  • [4] Auscher P., 2005, BOUNDEDNESS BA UNPUB
  • [5] Hardy spaces of differential forms on Riemannian manifolds
    Auscher, Pascal
    McIntosh, Alan
    Russ, Emmanuel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) : 192 - 248
  • [6] Auscher P, 2007, MEM AM MATH SOC, V186, pXI
  • [7] Christ M., 1990, Colloq. Math., V61, P601
  • [8] SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS
    COIFMAN, RR
    MEYER, Y
    STEIN, EM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) : 304 - 335
  • [9] EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS
    COIFMAN, RR
    WEISS, G
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) : 569 - 645
  • [10] COIFMAN RR, 1983, LECT NOTES MATH, V992, P1