On the mechanism of elasto-inertial turbulence

被引:130
作者
Dubief, Yves [1 ]
Terrapon, Vincent E. [2 ]
Soria, Julio [3 ,4 ]
机构
[1] Univ Vermont, Sch Engn, Burlington, VT 05405 USA
[2] Univ Liege, Dept Aerosp & Mech Engn, Liege, Belgium
[3] Monash Univ, Dept Mech & Aerosp Engn, Melbourne, Vic 3800, Australia
[4] King Abdulaziz Univ, Dept Aeronaut Engn, Jeddah 21413, Saudi Arabia
基金
美国国家卫生研究院; 澳大利亚研究理事会;
关键词
DRAG REDUCTION; ISOTROPIC TURBULENCE; POLYMER-SOLUTIONS; BOUNDARY-LAYER; CHANNEL FLOW; DYNAMICS; SIMULATIONS; VORTICES;
D O I
10.1063/1.4820142
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Elasto-inertial turbulence (EIT) is a new state of turbulence found in inertial flows with polymer additives. The dynamics of turbulence generated and controlled by such additives is investigated from the perspective of the coupling between polymer dynamics and flow structures. Direct numerical simulations of channel flow with Reynolds numbers ranging from 1000 to 6000 (based on the bulk and the channel height) are used to study the formation and dynamics of elastic instabilities and their effects on the flow. The flow topology of EIT is found to differ significantly from Newtonian wall-turbulence. Structures identified by positive (rotational flow topology) and negative (extensional/compressional flow topology) second invariant Q(a) isosurfaces of the velocity gradient are cylindrical and aligned in the spanwise direction. Polymers are significantly stretched in sheet-like regions that extend in the streamwise direction with a small upward tilt. The Q(a) cylindrical structures emerge from the sheets of high polymer extension, in a mechanism of energy transfer from the fluctuations of the polymer stress work to the turbulent kinetic energy. At subcritical Reynolds numbers, EIT is observed at modest Weissenberg number (Wi, ratio polymer relaxation time to viscous time scale). For supercritical Reynolds numbers, flows approach EIT at large Wi. EIT provides new insights on the nature of the asymptotic state of polymer drag reduction (maximum drag reduction), and explains the phenomenon of early turbulence, or onset of turbulence at lower-Reynolds numbers than for Newtonian flows observed in some polymeric flows. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 45 条
[1]   Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow [J].
Berti, S. ;
Boffetta, G. .
PHYSICAL REVIEW E, 2010, 82 (03)
[2]   Two-dimensional elastic turbulence [J].
Berti, S. ;
Bistagnino, A. ;
Boffetta, G. ;
Celani, A. ;
Musacchio, S. .
PHYSICAL REVIEW E, 2008, 77 (05)
[3]   Inverse Energy Cascade in Three-Dimensional Isotropic Turbulence [J].
Biferale, Luca ;
Musacchio, Stefano ;
Toschi, Federico .
PHYSICAL REVIEW LETTERS, 2012, 108 (16)
[4]  
Bird R. Byron, 1987, Kinetic theory, V2
[5]   Nonlinear dynamics of the viscoelastic Kolmogorov flow [J].
Bistagnino, A. ;
Boffetta, G. ;
Celani, A. ;
Mazzino, A. ;
Puliafito, A. ;
Vergassola, M. .
JOURNAL OF FLUID MECHANICS, 2007, 590 :61-80
[6]   Chaotic flow and efficient mixing in a microchannel with a polymer solution [J].
Burghelea, Teodor ;
Segre, Enrico ;
Bar-Joseph, Israel ;
Groisman, Alex ;
Steinberg, Victor .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2) :066305-1
[7]   Elastic turbulence in von Karman swirling flow between two disks [J].
Burghelea, Teodor ;
Segre, Enrico ;
Steinberg, Victor .
PHYSICS OF FLUIDS, 2007, 19 (05)
[8]   Strong polymer-turbulence interactions in viscoelastic turbulent channel flow [J].
Dallas, V. ;
Vassilicos, J. C. ;
Hewitt, G. F. .
PHYSICAL REVIEW E, 2010, 82 (06)
[9]   Homogeneous isotropic turbulence in dilute polymers [J].
De Angelis, E ;
Casciola, CM ;
Benzi, R ;
Piva, R .
JOURNAL OF FLUID MECHANICS, 2005, 531 :1-10
[10]  
De Gennes P.-G., 1990, Introduction to Polymer Dynamics