Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type

被引:21
作者
Girela, Daniel [1 ]
Angel Pelaez, Jose [1 ]
机构
[1] Univ Malaga, Dept Anal Matemat, Fac Ciencias, Malaga 29071, Spain
关键词
spaces of Dirichlet type; Hardy spaces; Bergman spaces; integral means; radial growth; sequences of zeros;
D O I
10.1017/S1446788700014105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 < p < infinity, we let D-p-1(p), denote the space of those functions f that are analytic in the unit disc Delta = {z is an element of C : vertical bar z vertical bar < 1} and satisfy integral(Delta)(1 - vertical bar z vertical bar)(p-1)vertical bar f'(z)vertical bar(p) dx dy < infinity. The spaces D-p-1(p) are closely related to Hardy spaces. We have, D-p-1(p) C H-p, if 0 < p <= 2, and H-p subset of D-p-1(p), if 2 <= p < infinity. In this paper we obtain a number of results about the Taylor coefficients of D-p-1(p)-funuions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 39 条
[1]  
Ahlfors L.V., 1966, Complex analysis
[2]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[3]  
[Anonymous], 1964, OXFORD MATH MONOGRAP
[4]  
ARAZY J, 1985, J REINE ANGEW MATH, V363, P110
[5]  
Arcozzi N, 2002, REV MAT IBEROAM, V18, P443
[6]  
Aulaskari R., 1995, Analysis, V15, P101, DOI DOI 10.1524/ANLY.1995.15.2.101
[7]   Univalent functions, Hardy spaces and spaces of Dirichlet type [J].
Baernstein, A ;
Girela, D ;
Peláez, JA .
ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) :837-859
[8]   Fractional integration, differentiation, and weighted Bergman spaces [J].
Buckley, SM ;
Koskela, P ;
Vukotic, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :369-385
[9]   Composition operators acting on holomorphic Sobolev spaces [J].
Choe, BR ;
Koo, H ;
Smith, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (07) :2829-2855
[10]   Corrected outer functions [J].
Doubtsov, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) :515-522