Regularization of multiplicative iterative algorithms with nonnegative constraint

被引:12
作者
Benvenuto, Federico [1 ]
Piana, Michele [1 ,2 ]
机构
[1] Univ Genoa, DIMA, I-16146 Genoa, Italy
[2] CNR SPIN, I-16146 Genoa, Italy
关键词
regularization; incompatible inverse problems; stopping rules; expectation maximization; Poisson noise; EXPECTATION-MAXIMIZATION; CONVERGENCE; RULES;
D O I
10.1088/0266-5611/30/3/035012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the regularization of the constrained maximum likelihood iterative algorithms applied to incompatible ill-posed linear inverse problems. Specifically, we introduce a novel stopping rule which defines a regularization algorithm for the iterative space reconstruction algorithm in the case of least-squares minimization. Further we show that the same rule regularizes the expectation maximization algorithm in the case of Kullback-Leibler minimization, provided a well-justified modification of the definition of Tikhonov regularization is introduced. The performances of this stopping rule are illustrated in the case of an image reconstruction problem in the x-ray solar astronomy.
引用
收藏
页数:17
相关论文
共 28 条
[1]  
[Anonymous], 1977, Solution of illposed problems
[2]   Stopping rules for a nonnegatively constrained iterative method for ill-posed Poisson imaging problems [J].
Bardsley, Johnathan M. .
BIT NUMERICAL MATHEMATICS, 2008, 48 (04) :651-664
[3]  
Barrett H. H., 2003, Foundations of Image Science
[4]   Expectation maximization for hard X-ray count modulation profiles [J].
Benvenuto, F. ;
Schwartz, R. ;
Piana, M. ;
Massone, A. M. .
ASTRONOMY & ASTROPHYSICS, 2013, 555
[5]   Nonnegative least-squares image deblurring: improved gradient projection approaches [J].
Benvenuto, F. ;
Zanella, R. ;
Zanni, L. ;
Bertero, M. .
INVERSE PROBLEMS, 2010, 26 (02)
[6]   A discrepancy principle for Poisson data [J].
Bertero, M. ;
Boccacci, P. ;
Talenti, G. ;
Zanella, R. ;
Zanni, L. .
INVERSE PROBLEMS, 2010, 26 (10)
[7]  
Bertero M., 1998, INTRO INVERSE PROBLE
[8]   A multi-scale stopping criterion for MLEM reconstructions in PET [J].
Bissantz, Nicolai ;
Mair, Bernard A. ;
Munk, Axel .
2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, :3376-3379
[9]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[10]   AN ITERATIVE IMAGE SPACE RECONSTRUCTION ALGORITHM SUITABLE FOR VOLUME ECT [J].
DAUBEWITHERSPOON, ME ;
MUEHLLEHNER, G .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1986, 5 (02) :61-66