On Weierstrass Gaps at Several Points

被引:5
|
作者
Tenorio, Wanderson [1 ]
Tizziotti, Guilherme [1 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, Av JN Avila 2121, BR-38408902 Uberlandia, MG, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2019年 / 50卷 / 02期
关键词
Weierstrass semigroup; Generalized Weierstrass semigroup; Pure gaps; Curves with separated variables;
D O I
10.1007/s00574-018-0116-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of determining Weierstrass gaps and pure Weierstrass gaps at several points. Using the notion of relative maximality in generalized Weierstrass semigroups due to Delgado (Proc Am Math Soc 108(3):627-631, 1990), we present a description of these elements which generalizes the approach of Homma and Kim (J Pure Appl Algebra 162(2-3):273-290, 2001) given for pairs. Through this description, we study the gaps and pure gaps at several points on a certain family of curves with separated variables.
引用
收藏
页码:543 / 559
页数:17
相关论文
共 50 条
  • [1] On Weierstrass Gaps at Several Points
    Wanderson Tenório
    Guilherme Tizziotti
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 543 - 559
  • [2] Weierstrass Semigroup and Pure Gaps at Several Points on the GK Curve
    Tizziotti, G.
    Castellanos, A. S.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (02): : 419 - 429
  • [3] Weierstrass Semigroup and Pure Gaps at Several Points on the GK Curve
    G. Tizziotti
    A. S. Castellanos
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 419 - 429
  • [4] Weierstrass Pure Gaps on Curves With Three Distinguished Points
    Borges Filho, Herivelto Martins
    Cunha, Gregory Duran
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3062 - 3069
  • [5] Generalized Weierstrass semigroups at several points on certain maximal curves which cannot be covered by the Hermitian curve
    M. Montanucci
    G. Tizziotti
    Designs, Codes and Cryptography, 2023, 91 : 831 - 851
  • [6] Generalized Weierstrass semigroups at several points on certain maximal curves which cannot be covered by the Hermitian curve
    Montanucci, M.
    Tizziotti, G.
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (03) : 831 - 851
  • [7] Pure Weierstrass gaps from a quotient of the Hermitian curve
    Yang, Shudi
    Hu, Chuangqiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 251 - 271
  • [8] Weierstrass semigroups, pure gaps and codes on function fields
    Alonso S. Castellanos
    Erik A. R. Mendoza
    Luciane Quoos
    Designs, Codes and Cryptography, 2024, 92 : 1219 - 1242
  • [9] Weierstrass semigroups, pure gaps and codes on function fields
    Castellanos, Alonso S.
    Mendoza, Erik A. R.
    Quoos, Luciane
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1219 - 1242
  • [10] Triples of rational points on the Hermitian curve and their Weierstrass semigroups
    Matthews, Gretchen L.
    Skabelund, Dane
    Wills, Michael
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)