Recursively free reflection arrangements

被引:3
作者
Muecksch, Paul [1 ]
机构
[1] Leibniz Univ Hannover, Fak Math & Phys, Inst Algebra Zahlentheorie & Diskrete Math, Welfengarten 1, D-30167 Hannover, Germany
关键词
Hyperplane arrangements; Reflection arrangements; Recursively free arrangements; Inductively free arrangements; Divisionally free arrangements;
D O I
10.1016/j.jalgebra.2016.10.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = A(W) be the reflection arrangement of the finite complex reflection group W. By Terao's famous theorem, the arrangement A is free. In this paper we classify all reflection arrangements which belong to the smaller class of recursively free arrangements. Moreover for the case that W admits an irreducible factor isomorphic to G(31) we obtain a new (computer-free) proof for the non-inductive freeness of A(W). Since our classification implies the non-recursive freeness of the reflection arrangement A(G(31)), we can prove a conjecture by Abe about the new class of divisionally free arrangements which he recently introduced. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 48
页数:25
相关论文
共 15 条
[1]  
Abe T., 2014, ARXIV14113351
[2]  
Abe Takuro, 2015, INVENT MATH
[3]  
Abe Talcuro, 2015, J ALGEBRAIC COMBIN
[4]   On inductively free restrictions of reflection arrangements [J].
Amend, Nils ;
Hoge, Torsten ;
Roehrle, Gerhard .
JOURNAL OF ALGEBRA, 2014, 418 :197-212
[5]  
[Anonymous], THESIS
[6]   Coxeter and crystallographic arrangements are inductively free [J].
Barakat, Mohamed ;
Cuntz, Michael .
ADVANCES IN MATHEMATICS, 2012, 229 (01) :691-709
[7]  
Cuntz M, 2015, P AM MATH SOC, V143, P35
[8]  
Hoge T., 2015, ARXIV150106312
[9]   On inductively free reflection arrangements [J].
Hoge, Torsten ;
Roehrle, Gerhard .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 701 :205-220
[10]  
Lehrer G. I., 2009, AUSTR MATH SOC LECT