ON WEIGHTED BERNSTEIN TYPE INEQUALITY IN GRAND VARIABLE EXPONENT LEBESGUE SPACES

被引:7
作者
Kokilashvili, Vakhtang [1 ,2 ]
Meskhi, Alexander [1 ,3 ]
机构
[1] I Javakhishvili Tbilisi State Univ, Dept Math Anal, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
[2] Int Black Sea Univ, GE-0131 Tbilisi, Georgia
[3] Georgian Tech Univ, Dept Math, Fac Informat & Control Syst, Tbilisi, Georgia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2015年 / 18卷 / 03期
基金
美国国家科学基金会;
关键词
Bernstein inequality; trigonometric polynomial; grand variable exponent Lebesgue spaces;
D O I
10.7153/mia-18-75
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper a weighted Bernstein type inequality on derivatives of trigonometric polynomials is established in new function spaces unifying two nonstandard Banach function spaces, in particular, grand and variable exponent Lebegue spaces.
引用
收藏
页码:991 / 1002
页数:12
相关论文
共 13 条
[1]  
DeVore R. A., 1993, Constructive Approximation
[2]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[3]  
Ditzian Z., 1987, Springer Series in Computational Mathematics
[4]  
DUOANDIKOETXEA X., 2001, GRADUATE STUDIES MAT, V29
[5]  
Fiorenza A., 2000, Collect. Math., V51, P131
[6]   The maximal theorem for weighted grand Lebesgue spaces [J].
Fiorenza, Alberto ;
Gupta, Babita ;
Jain, Pankaj .
STUDIA MATHEMATICA, 2008, 188 (02) :123-133
[7]   Inverting the p-harmonic operator [J].
Greco, L ;
Iwaniec, T ;
Sbordone, C .
MANUSCRIPTA MATHEMATICA, 1997, 92 (02) :249-258
[8]   ON THE INTEGRABILITY OF THE JACOBIAN UNDER MINIMAL HYPOTHESES [J].
IWANIEC, T ;
SBORDONE, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (02) :129-143
[9]  
KOKILASHVILI V., 2013, P A RAZMADZE MATH I, V161, P15
[10]  
KOKILASHVILI V., 2013, PROC RAZMADZE MATH I, V162, P144