On optimal joint reflective and refractive dividend strategies in spectrally positive Levy models

被引:12
作者
Avanzi, Benjamin [1 ,2 ]
Perez, Jose-Luis [3 ]
Wong, Bernard [1 ]
Yamazaki, Kazutoshi [4 ]
机构
[1] UNSW, Sch Risk & Actuarial Studies, UNSW Australia Business Sch, Sydney, NSW 2052, Australia
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3T 1J4, Canada
[3] Ctr Invest Matemat AC, Dept Probabil & Stat, Calle Jalisco S-N, Guanajuato 36240, Mexico
[4] Kansai Univ, Dept Math, Fac Engn Sci, 3-3-35 Yamate Cho, Suita, Osaka 5648680, Japan
基金
澳大利亚研究理事会;
关键词
Surplus models; Optimal dividends; Threshold strategy; Barrier strategy; Transaction costs; RISK MODEL; DUAL MODEL;
D O I
10.1016/j.insmatheco.2016.10.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this context, numerous papers considered threshold (refractive) and barrier (reflective) dividend strategies. These were shown to be optimal in a number of different contexts for bounded and unbounded payout rates, respectively. In this paper, motivated by the behavior of some dividend paying stock exchange companies, we determine the optimal dividend strategy when both continuous (refractive) and lump sum (reflective) dividends can be paid at any time, and if they are subject to different transaction rates. We consider the general family of spectrally positive Levy processes. Using scale functions, we obtain explicit formulas for the expected present value of dividends until ruin, with a penalty at ruin. We develop a verification lemma, and show that a two-layer (a, b) strategy is optimal. Such a strategy pays continuous dividends when the surplus exceeds level a > 0, and all of the excess over b > a as lump sum dividend payments. Results are illustrated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 162
页数:15
相关论文
共 35 条
  • [1] Dividend problems in the dual risk model
    Afonso, Lourdes B.
    Cardoso, Rui M. R.
    Egidio dos Reis, Alfredo D.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2013, 53 (03) : 906 - 918
  • [2] A RISK MODEL WITH MULTILAYER DIVIDEND STRATEGY
    Albrecher, Hansjoerg
    Hartinger, Juergen
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2007, 11 (02) : 43 - 64
  • [3] Optimality results for dividend problems in insurance
    Albrecher, Hansjoerg
    Thonhauser, Stefan
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2009, 103 (02) : 295 - 320
  • [4] Russian and American put options under exponential phase-type Levy models
    Asmussen, S
    Avram, F
    Pistorius, MR
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (01) : 79 - 111
  • [5] ASMUSSEN S., 2010, ADV SERIES STAT SCI, V14
  • [6] Optimal dividends in the dual model
    Avanzi, Benjamin
    Gerber, Hans U.
    Shiu, Elias S. W.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2007, 41 (01) : 111 - 123
  • [7] A Note on Realistic Dividends in Actuarial Surplus Models
    Avanzi, Benjamin
    Tu, Vincent
    Wong, Bernard
    [J]. RISKS, 2016, 4 (04)
  • [8] OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL WITH DIFFUSION
    Avanzi, Benjamin
    Shen, Jonathan
    Wong, Bernard
    [J]. ASTIN BULLETIN, 2011, 41 (02): : 611 - 644
  • [9] STRATEGIES FOR DIVIDEND DISTRIBUTION: A REVIEW
    Avanzi, Benjamin
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2009, 13 (02) : 217 - 251
  • [10] Optimizing venture capital investments in a jump diffusion model
    Bayraktar, Erhan
    Egami, Masahiko
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (01) : 21 - 42