Computational Methods for Single-Cell RNA Sequencing

被引:54
|
作者
Hie, Brian [1 ]
Peters, Joshua [2 ,3 ]
Nyquist, Sarah K. [1 ,3 ,4 ]
Shalek, Alex K. [3 ,5 ,6 ,7 ]
Berger, Bonnie [1 ,8 ]
Bryson, Bryan D. [2 ,3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Ragon Inst MGH MIT & Harvard, Cambridge, MA 02139 USA
[4] MIT, Program Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Chem, Cambridge, MA 02139 USA
[6] MIT, Inst Med Engn & Sci IMES, Cambridge, MA 02139 USA
[7] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[8] MIT, Dept Math, Cambridge, MA 02139 USA
来源
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020 | 2020年 / 3卷
关键词
computational methods; single-cell RNA sequencing; data integration; gene regulatory networks; dimensionality reduction; clustering; GENE REGULATORY NETWORKS; SEQ; EXPRESSION; INFERENCE; NORMALIZATION; TIME;
D O I
10.1146/annurev-biodatasci-012220-100601
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) has provided a high-dimensional catalog of millions of cells across species and diseases. These data have spurred the development of hundreds of computational tools to derive novel biological insights. Here, we outline the components of scRNA-seq analytical pipelines and the computational methods that underlie these steps. We describe available methods, highlight well-executed benchmarking studies, and identify opportunities for additional benchmarking studies and computational methods. As the biochemical approaches for single-cell omics advance, we propose coupled development of robust analytical pipelines suited for the challenges that new data present and principled selection of analytical methods that are suited for the biological questions to be addressed.
引用
收藏
页码:339 / 364
页数:26
相关论文
共 50 条
  • [1] Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data
    Zhang, Lihua
    Zhang, Shihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 376 - 389
  • [2] Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data
    Xi, Nan Miles
    Li, Jingyi Jessica
    CELL SYSTEMS, 2021, 12 (02) : 176 - +
  • [3] Comparative Analysis of Single-Cell - RNA Sequencing Methods
    Ziegenhain, C.
    Vieth, B.
    Parekh, S.
    Reinius, B.
    Guillaumet-Adkins, A.
    Smets, M.
    Leonhardt, H.
    Heyn, H.
    Hellmann, I.
    Enard, W.
    ANNALS OF HEMATOLOGY, 2017, 96 : S58 - S58
  • [4] Comparative Analysis of Single-Cell RNA Sequencing Methods
    Ziegenhain, Christoph
    Vieth, Beate
    Parekh, Swati
    Reinius, Bjorn
    Guillaumet-Adkins, Amy
    Smets, Martha
    Leonhardt, Heinrich
    Heyn, Holger
    Hellmann, Ines
    Enard, Wolfgang
    MOLECULAR CELL, 2017, 65 (04) : 631 - +
  • [5] Editorial: Statistical and computational methods for single-cell sequencing analysis
    Hou, Lin
    Ji, Zhicheng
    Wang, Jingshu
    Xie, Jichun
    FRONTIERS IN GENETICS, 2023, 14
  • [6] Automatic cell type identification methods for single-cell RNA sequencing
    Xie, Bingbing
    Jiang, Qin
    Mora, Antonio
    Li, Xuri
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 5874 - 5887
  • [7] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [8] Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data
    Andrews, Tallulah S.
    Kiselev, Vladimir Yu
    McCarthy, Davis
    Hemberg, Martin
    NATURE PROTOCOLS, 2021, 16 (01) : 1 - 9
  • [9] Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data
    Tallulah S. Andrews
    Vladimir Yu Kiselev
    Davis McCarthy
    Martin Hemberg
    Nature Protocols, 2021, 16 : 1 - 9
  • [10] scds: computational annotation of doublets in single-cell RNA sequencing data
    Bais, Abha S.
    Kostka, Dennis
    BIOINFORMATICS, 2020, 36 (04) : 1150 - 1158