Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing

被引:53
|
作者
Sanfilippo, Joseph E. [1 ]
Lorestani, Alexander [1 ]
Koch, Matthias D. [1 ,2 ]
Bratton, Benjamin P. [1 ,2 ]
Siryaporn, Albert [1 ,3 ,4 ]
Stone, Howard A. [5 ]
Gitai, Zemer [1 ]
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA
[4] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92717 USA
[5] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
PSEUDOMONAS-AERUGINOSA; VIRULENCE FACTORS; FLOW;
D O I
10.1038/s41564-019-0455-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Multiple cell types sense fluid flow as an environmental cue. Flow can exert shear force (or stress) on cells, and the prevailing model is that biological flow sensing involves the measurement of shear force(1,2). Here, we provide evidence for force-independent flow sensing in the bacterium Pseudomonas aeruginosa. A microfluidic-based transcriptomic approach enabled us to discover an operon of P. aeruginosa that is rapidly and robustly upregulated in response to flow. Using a single-cell reporter of this operon, which we name the flow-regulated operon (fro), we establish that P. aeruginosa dynamically tunes gene expression to flow intensity through a process we call rheosensing (as rheo- is Greek for flow). We further show that rheosensing occurs in multicellular biofilms, involves signalling through the alternative sigma factor FroR, and does not require known surface sensors. To directly test whether rheosensing measures force, we independently altered the two parameters that contribute to shear stress: shear rate and solution viscosity. Surprisingly, we discovered that rheosensing is sensitive to shear rate but not viscosity, indicating that rheosensing is a kinematic (force-independent) form of mechanosensing. Thus, our findings challenge the dominant belief that biological mechanosensing requires the measurement of forces.
引用
收藏
页码:1274 / 1281
页数:8
相关论文
共 15 条
  • [1] Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing
    Joseph E. Sanfilippo
    Alexander Lorestani
    Matthias D. Koch
    Benjamin P. Bratton
    Albert Siryaporn
    Howard A. Stone
    Zemer Gitai
    Nature Microbiology, 2019, 4 : 1274 - 1281
  • [2] Microfluidic-Based Bacterial Molecular Computing on a Chip
    Martins, Daniel P.
    Barros, Michael Taynnan
    O'Sullivan, Benjamin J.
    Seymour, Ian
    O'Riordan, Alan
    Coffey, Lee
    Sweeney, Joseph B.
    Balasubramaniam, Sasitharan
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 16772 - 16784
  • [3] A Microfluidic-Based Investigation of Bacterial Attachment in Ureteral Stents
    De Grazia, Antonio
    LuTheryn, Gareth
    Meghdadi, Alireza
    Mosayyebi, Ali
    Espinosa-Ortiz, Erika J.
    Gerlach, Robin
    Carugo, Dario
    MICROMACHINES, 2020, 11 (04)
  • [4] Evaluation of bacterial proliferation with a microfluidic-based device: Antibiochip
    Gallo, Valentina
    Ruiba, Alessia
    Zanin, Massimo
    Begnamino, Paolo
    Ledda, Sabina
    Pesce, Tiziana
    Melioli, Giovanni
    Pizzi, Marco
    PLOS ONE, 2020, 15 (02):
  • [5] Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella
    Ding, Yun
    Qiu, Famin
    Casadevall i Solvas, Xavier
    Chiu, Flora Wing Yin
    Nelson, Bradley J.
    deMello, Andrew
    MICROMACHINES, 2016, 7 (02)
  • [6] A MICROFLUIDIC-BASED TACTILE SENSOR FOR 3-DOF FORCE/TORQUE DETECTION
    Yang, Yichao
    Hao, Zhili
    INTERNATIONAL TECHNICAL CONFERENCE AND EXHIBITION ON PACKAGING AND INTEGRATION OF ELECTRONIC AND PHOTONIC MICROSYSTEMS, 2015, VOL 3, 2015,
  • [7] Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization
    Lee, Young-Sang
    Ku, Kang-Mo
    Becker, Talon M.
    Juvik, John A.
    PLOS ONE, 2017, 12 (09):
  • [8] Droplet enhanced microfluidic-based DNA purification from bacterial lysates via phenol extraction
    Morales, Mercedes C.
    Zahn, Jeffrey D.
    MICROFLUIDICS AND NANOFLUIDICS, 2010, 9 (06) : 1041 - 1049
  • [9] Evaluation of a microfluidic-based point-of-care prototype with customized chip for detection of bacterial clusters
    Treffon, Janina
    Isserstedt-John, Nicole
    Klemm, Richard
    Gaertner, Claudia
    Mellmann, Alexander
    MICROBIOLOGY SPECTRUM, 2024, 12 (12):
  • [10] Droplet enhanced microfluidic-based DNA purification from bacterial lysates via phenol extraction
    Mercedes C. Morales
    Jeffrey D. Zahn
    Microfluidics and Nanofluidics, 2010, 9 : 1041 - 1049