Solution curves for semilinear equations on a ball

被引:34
作者
Korman, P
机构
关键词
Dirichlet problem on a ball; Crandall-Rabinowitz theorem;
D O I
10.1090/S0002-9939-97-04119-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the set of positive solutions of semilinear Dirichlet problem on a ball of radius R in R-n Delta u + lambda f(u) = 0 for \x\<R, u = 0 on \x\ = R consists of smooth curves. Our results can be applied to compute the direction of bifurcation. We also give an easy proof of a uniqueness theorem due to Smeller and Wasserman (1984).
引用
收藏
页码:1997 / 2005
页数:9
相关论文
共 12 条
[1]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[3]  
EVANS LC, 1994, BERKELEY ECT NOTES M, V3
[4]   THE SET OF POSITIVE SOLUTIONS OF SEMILINEAR EQUATIONS IN LARGE BALLS [J].
GARDNER, R ;
PELETIER, LA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 104 :53-72
[5]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[6]   UNIQUENESS OF GLOBAL POSITIVE SOLUTION BRANCHES OF NONLINEAR ELLIPTIC PROBLEMS [J].
HOLZMANN, M ;
KIELHOFER, H .
MATHEMATISCHE ANNALEN, 1994, 300 (02) :221-241
[7]   Exact multiplicity results for boundary value problems with nonlinearities generalising cubic [J].
Korman, P ;
Li, Y ;
Ouyang, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :599-616
[8]  
KORMAN P, IN PRESS FUNKCIALAJ
[9]  
KORMAN P, INP RESS COMM PDE
[10]   A COUNTEREXAMPLE TO THE NODAL DOMAIN CONJECTURE AND A RELATED SEMILINEAR EQUATION [J].
LIN, CS ;
NI, WM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (02) :271-277