State of the art in linear system identification: Time and frequency domain methods

被引:0
作者
Ljung, L [1 ]
机构
[1] Linkoping Univ, Div Automat Control, SE-58183 Linkoping, Sweden
来源
PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2004年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identification of time-invariant linear dynamic systems is a mature subject. In this contribution we focus on the interplay between methods that use time and frequency domain data, respectively. The frequency domain data could be either input/output Fourier transforms or frequency functions. We explain how these different kinds of data types are used to fit models, and how closely related the methods are. Of special interest is how transients (initial conditions and deviations from periodic signals) are handled. Direct estimation of time-continuous models is also discussed, as well as software aspects.
引用
收藏
页码:650 / 660
页数:11
相关论文
共 16 条
[1]  
Cleveland WilliamS., 1991, Statistics and Computing, V1, P47, DOI [10.1007/BF01890836, DOI 10.1007/BF01890836]
[2]  
Fan J, 1996, LOCAL POLYNOMIAL MOD, V66
[3]  
Garnier H., 2004, P AM CONTR C
[4]  
Ljung L, 2003, LECT NOTES CONTR INF, V286, P203
[5]  
Ljung L., 1999, SYSTEM IDENTIFICATIO
[6]  
LJUNG L, 2003, SYSTEM IDENTIFICATIO
[7]   Subspace-based multivariable system identification from frequency response data [J].
McKelvey, T ;
Akcay, H ;
Ljung, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :960-979
[8]  
MCKELVEY T, 2004, P AM CONTR C
[9]  
Nadaraya E., 1964, THEOR PROBAB APPL, V9, P141, DOI DOI 10.1137/1109020
[10]  
PINTELON R, 1997, IEEE T AUTOMATIC CON, V42, P17171