A note on the life span of semilinear pseudo-parabolic equation

被引:6
|
作者
Cao, Yang [1 ]
Wang, Zhiyong [2 ,3 ]
Yin, Jingxue [4 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[3] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
[4] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Pseudo-parabolic equation; Life span; Compact support initial value; CAUCHY-PROBLEM; HEAT-EQUATION;
D O I
10.1016/j.aml.2019.06.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the semilinear pseudo-parabolic equation with initial data with compact support. We find the life span of the solution, when the power exponent p is smaller than the Fujita exponent. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:406 / 410
页数:5
相关论文
共 50 条
  • [41] Dynamics of a nonlinear pseudo-parabolic equation with fading memory
    Peng, Xiaoming
    Shang, Yadong
    Yu, Jiali
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (05)
  • [42] Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation
    Borikhanov, Meiirkhan B.
    Torebek, Berikbol T.
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [43] On the well-posedness of a nonlinear pseudo-parabolic equation
    Tuan, Nguyen Huy
    Au, Vo Van
    Tri, Vo Viet
    O'Regan, Donal
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [44] An inverse problem for the pseudo-parabolic equation for Laplace operator
    Ruzhansky, M.
    Serikbaev, D.
    Tokmagambetov, N.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2019, 10 (01): : 23 - 28
  • [45] Blow-up phenomena for a pseudo-parabolic equation
    Luo, Peng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2636 - 2641
  • [46] A Pseudo-Parabolic Type Equation with Weakly Nonlinear Sources
    Li Yinghua
    Cao Yang
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 26 (04): : 363 - 372
  • [47] PRIORI INEQUALITIES AND DIRICHLET PROBLEM FOR A PSEUDO-PARABOLIC EQUATION
    SIGILLITO, VG
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (02) : 222 - 229
  • [48] On the well-posedness of a nonlinear pseudo-parabolic equation
    Nguyen Huy Tuan
    Vo Van Au
    Vo Viet Tri
    Donal O’Regan
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [49] Global existence and blow-up phenomenon for a nonlocal semilinear pseudo-parabolic p-Laplacian equation
    Chen, Na
    Li, Fushan
    Wang, Peihe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 395 - 440
  • [50] Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term
    Sun, Fenglong
    Liu, Lishan
    Wu, Yonghong
    APPLICABLE ANALYSIS, 2019, 98 (04) : 735 - 755