Online appearance-based face and facial feature tracking

被引:6
作者
Dornaika, F [1 ]
Davoine, F [1 ]
机构
[1] Univ Technol Compiegne, CNRS, HEUDIASYC, F-60205 Compiegne, France
来源
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3 | 2004年
关键词
D O I
10.1109/ICPR.2004.1334653
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a simple framework that utilizes online appearance models for 3D face and facial feature tracking with a deformable model. Adapting the geometrical parameters for each frame adopts a steepest ascent method in the observation likelihood using a local exhaustive and directed search in the parameter space. The observation likelihood is based on the current appearance and the registered images. The developed framework is straightforward and has the following advantages. First, it does not require any a priori statistical facial texture. Second, it does not require any a priori transition model for the 3D motion. Video sequences featuring large head motions, large facial animations, and external illumination variations are successfully tracked, which demonstrate the efficiency of the developed framework.
引用
收藏
页码:814 / 817
页数:4
相关论文
共 9 条
  • [1] An active model for facial feature tracking
    Ahlberg, J
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (06) : 566 - 571
  • [2] Birchfield S., 1998, P IEEE C COMP VIS PA
  • [3] CASCIA ML, 2000, IEEE T PATTERN ANAL, V22, P322
  • [4] Active appearance models
    Cootes, TF
    Edwards, GJ
    Taylor, CJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) : 681 - 685
  • [5] GOKTURK S, 2001, P IEEE INT C COMP VI
  • [6] Jebara T., 1997, P IEEE C COMP VIS PA
  • [7] Robust online appearance models for visual tracking
    Jepson, AD
    Fleet, DJ
    El-Maraghi, TF
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) : 1296 - 1311
  • [8] Matthews I., 2002, CMURITR0302
  • [9] ZHOU S, 2004, IN PRESS IEEE T IMAG