Fourier analysis of Schwarz domain decomposition methods for the biharmonic equation

被引:5
作者
Shang, Yue-qiang [1 ,2 ]
He, Yin-nian [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
[2] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
domain decomposition algorithm; Schwarz method; Fourier transform; biharmonic equation;
D O I
10.1007/s10483-009-0912-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.
引用
收藏
页码:1177 / 1182
页数:6
相关论文
共 11 条
[1]  
Bjorstad P.E., 1989, P 2 INT S DOMAIN DEC, P147
[2]  
Chen S., 2005, INTRO MODERN PARTIAL
[3]  
Dolean V, 2009, MATH COMPUT, V78, P789
[4]  
Gander MJ, 2006, SIAM J NUMER ANAL, V44, P699, DOI 10.1137/S0036142903425409
[5]  
LI KT, 2008, DISTRIBUTIONS SOBOLE
[6]  
Lions P-L, 1988, 1 INT S DOM DEC METH, P1
[7]  
Lu T., 1992, Domain Decomposition Methods - New Techniques for Numerical Solution of Partial Differential Equations
[8]  
Schwarz H.A., 1890, Gesammelte Mathematische Abhandlungen, V2, P133
[9]  
Shi ZC, 2005, J COMPUT MATH, V23, P537
[10]   A two-level additive Schwarz method for the Morley nonconforming element approximation of a nonlinear biharmonic equation [J].
Xu, XJ ;
Lui, SH ;
Rahman, T .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :97-122