Convergence rates of derivatives of Floater-Hormann interpolants for well-spaced nodes

被引:14
作者
Cirillo, Emiliano [1 ]
Hormann, Kai [1 ]
Sidon, Jean [1 ]
机构
[1] Univ Svizzera Italiana, Lugano, Switzerland
基金
瑞士国家科学基金会;
关键词
Rational interpolation; Convergence rate; BERRUTS RATIONAL INTERPOLANT; LEBESGUE CONSTANT;
D O I
10.1016/j.apnum.2016.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Floater-Hormann interpolants constitute a family of barycentric rational interpolants which are based on blending local polynomial interpolants of degree d. Recent results suggest that the k-th derivatives of these interpolants converge at the rate of 0 (h(d+l-k)) for k <= d as the mesh size h converges to zero. So far, this convergence rate has been proven for k = 1,2 and for k >= 3 under the assumption of equidistant or quasi-equidistant interpolation nodes. In this paper we extend these results and prove that Floater-Hormann interpolants and their derivatives converge at the rate of 0 (h(j)(d+1-k)), where h(j) is the local mesh size, for any k >= 0 and any set of well-spaced nodes. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 118
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 2013, APPROXIMATION THEORY
[2]   Convergence rates of derivatives of a family of barycentric rational interpolants [J].
Berrut, Jean-Paul ;
Floater, Michael S. ;
Klein, Georges .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (09) :989-1000
[3]   RATIONAL FUNCTIONS FOR GUARANTEED AND EXPERIMENTALLY WELL-CONDITIONED GLOBAL INTERPOLATION [J].
BERRUT, JP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (01) :1-16
[4]   Bounding the Lebesgue constant for Berrut's rational interpolant at general nodes [J].
Bos, Len ;
De Marchi, Stefano ;
Hormann, Kai ;
Sidon, Jean .
JOURNAL OF APPROXIMATION THEORY, 2013, 169 :7-22
[5]   On the Lebesgue constant of barycentric rational interpolation at equidistant nodes [J].
Bos, Len ;
De Marchi, Stefano ;
Hormann, Kai ;
Klein, Georges .
NUMERISCHE MATHEMATIK, 2012, 121 (03) :461-471
[6]   On the Lebesgue constant of Berrut's rational interpolant at equidistant nodes [J].
Bos, Len ;
De Marchi, Stefano ;
Hormann, Kai .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) :504-510
[7]  
Brutman L., 1997, Ann. Numer. Math, V4, P111
[8]   Barycentric rational interpolation with no poles and high rates of approximation [J].
Floater, Michael S. ;
Hormann, Kai .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :315-331
[9]  
Hoppe R., 1845, Theorie der independenten Darstellung der hoheren Differentialquotienten
[10]   The curious history of Faa di Bruno's formula [J].
Johnson, WP .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03) :217-234