Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones.