An upper bound on the minimum Euclidean distance for block-coded phase-shift keying

被引:4
|
作者
Nilsson, M [1 ]
Lennerstad, H [1 ]
机构
[1] Univ Karlskrona Ronneby, Dept Math, S-37179 Karlskrona, Sweden
关键词
block codes; coded modulation; minimum Euclidean distance; multilevel codes; nonlinear codes; phase-shift keying;
D O I
10.1109/18.825837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an upper bound on the minimum Euclidean distance d (E min) (C) for block-coded PSK. The bound is an analytic expression depending on the alphabet size q, the block length n, and the number of codewords \ C \ of the code C. The bound is valid for all block codes with q greater than or equal to 4 and with medium or high rate-codes where \ C \ > (q/3)(n). There are several well-known block codes whose d (E min) (C) is equal to our upper bound. Hence these codes are the best possible in the sense that there does not exist a code with the same q, n, and \ C \ and with a larger d (E min) (C). It also follows that for many choices of q, n, and \ C \, in particular for high rates, our upper bound on d (E min) (C) is optimal.
引用
收藏
页码:656 / 662
页数:7
相关论文
共 50 条
  • [41] Bounds for minimum Euclidean distance for coded multiuser CDMA systems
    Jana, R
    Wei, L
    IEEE ISSSTA '96 - IEEE FOURTH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES & APPLICATIONS, PROCEEDINGS, VOLS 1-3, 1996, : 847 - 851
  • [42] The effect of a pseudorandom phase-shift keyed interference on the noise immunity of a minimum frequency-shift keying correlation demodulator
    Kulikov, G.V.
    2002, Nauka Moscow (47):
  • [44] Scheme for differential quadrature phase-shift keying/quadrature phase-shift keying signal all-optical regeneration based on phase-sensitive amplification
    Yan, J.
    An, L.
    Zheng, Z.
    Liu, X.
    IET OPTOELECTRONICS, 2009, 3 (03) : 158 - 162
  • [45] A LOWER BOUND ON THE MINIMUM EUCLIDEAN DISTANCE OF TRELLIS CODES
    ROUANNE, M
    COSTELLO, DJ
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 130 - 140
  • [46] Capacity of a Communication Channel with Quadrature Phase-Shift Keying and Phase Quantization
    Brychkov, Yu. A.
    Savischenko, N. V.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2024, 166 (03): : 306 - 319
  • [47] Narrow-band phase-rotating phase-shift keying
    Kubo, H
    Miyake, M
    IEICE TRANSACTIONS ON COMMUNICATIONS, 1999, E82B (04) : 627 - 635
  • [48] Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying
    Ba, Dexin
    Li, Yue
    Yan, Jialiang
    Zhang, Xiaopei
    Dong, Yongkang
    OPTICS EXPRESS, 2019, 27 (25): : 36197 - 36205
  • [49] Chaotic Oscillator-Based Binary Phase-Shift Keying
    Harwood, Luke T.
    Warr, Paul A.
    Beach, Mark A.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (05) : 1578 - 1587
  • [50] Experimental demonstration of microring quadrature phase-shift keying modulators
    Dong, Po
    Xie, Chongjin
    Chen, Long
    Fontaine, Nicolas K.
    Chen, Young-kai
    OPTICS LETTERS, 2012, 37 (07) : 1178 - 1180