An upper bound on the minimum Euclidean distance for block-coded phase-shift keying

被引:4
|
作者
Nilsson, M [1 ]
Lennerstad, H [1 ]
机构
[1] Univ Karlskrona Ronneby, Dept Math, S-37179 Karlskrona, Sweden
关键词
block codes; coded modulation; minimum Euclidean distance; multilevel codes; nonlinear codes; phase-shift keying;
D O I
10.1109/18.825837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an upper bound on the minimum Euclidean distance d (E min) (C) for block-coded PSK. The bound is an analytic expression depending on the alphabet size q, the block length n, and the number of codewords \ C \ of the code C. The bound is valid for all block codes with q greater than or equal to 4 and with medium or high rate-codes where \ C \ > (q/3)(n). There are several well-known block codes whose d (E min) (C) is equal to our upper bound. Hence these codes are the best possible in the sense that there does not exist a code with the same q, n, and \ C \ and with a larger d (E min) (C). It also follows that for many choices of q, n, and \ C \, in particular for high rates, our upper bound on d (E min) (C) is optimal.
引用
收藏
页码:656 / 662
页数:7
相关论文
共 50 条
  • [21] QUADRATURE-QUADRATURE PHASE-SHIFT KEYING
    SAHA, D
    BIRDSALL, TG
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (05) : 437 - 448
  • [22] Spectral Distortions of a Phase-Shift Keying Signal
    Meleshin, Yury M.
    Khasanov, Marat S.
    Oreshkin, Vitaly I.
    Tsvetkov, Vadim K.
    Chistukhin, Victor V.
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 1264 - 1266
  • [23] A difference phase-shift keying signal synchronizer
    Makogon, V. P.
    Kramar, V. A.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY 2016, 2017, 803
  • [24] A LOWER-BOUND ON THE MINIMUM EUCLIDEAN DISTANCE OF TRELLIS-CODED MODULATION SCHEMES - COMMENTS
    CHAO, CC
    CHIU, MC
    SCHLEGEL, C
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (05) : 1531 - 1535
  • [25] Phase-shift keying of an optical Bragg cell filter
    Heinisch, C
    Lichtenberg, S
    Petrov, V
    Petter, J
    Tschudi, T
    OPTICS COMMUNICATIONS, 2005, 253 (4-6) : 320 - 331
  • [26] ERROR RATE APPROXIMATIONS FOR DIFFERENTIAL PHASE-SHIFT KEYING
    BUSSGANG, JJ
    LEITER, M
    IEEE TRANSACTIONS ON COMMUNICATIONS SYSTEMS, 1964, CS12 (01): : 18 - &
  • [27] Coherent Magneto-optomechanical Signal Transduction and Long-Distance Phase-Shift Keying
    Rudd, M. J.
    Kim, P. H.
    Potts, C. A.
    Doolin, C.
    Ramp, H.
    Hauer, B. D.
    Davis, J. P.
    PHYSICAL REVIEW APPLIED, 2019, 12 (03)
  • [28] DISCRETE FREQUENCY- AND PHASE-SHIFT KEYING CIRCUITS
    BUKHVINE.VY
    ISTOMINA, GV
    TELECOMMUNICATIONS AND RADIO ENGINEER-USSR, 1965, (12): : 113 - &
  • [29] SYNCHRONIZATION OF QUADRATURE QUADRATURE PHASE-SHIFT KEYING SIGNALS
    DEGAUDENZI, R
    LUISE, M
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1992, 40 (09) : 1532 - 1539
  • [30] LFM SIGNALS WITH INTRAPULSE PHASE-SHIFT KEYING.
    Kochemasov, V.N.
    Kryazhev, V.P.
    Okoneshnikov, V.S.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1980, 34-35 (02): : 101 - 103